
Method For Evaluating

Quantum Operator Averages

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

November 1, 2010

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing appendix contained in a single compact disc (CD) is

included herewith and incorporated by reference herein. The CD is in IBM-PC format

and was burned with a computer running the Windows 98 operating system. The CD

contains a single file titled QOperAv1-5.txt, in ASCII format, of size 542 KBytes,

burnt onto the CD on Oct. 31, 2010.

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

2

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.Har is A. W. Harrow, A. Hassidim, S. Lloyd, “Quantum algorithm for solving

linear systems of equations”, arXiv:0811.3171v3

Ref.Chi is A.M. Childs, “On the relationship between continuous- and discrete-time

quantum walk”, arXiv:0810.0312

Ref.Ley is S. K. Leyton, T. J. Osborne, “A quantum algorithm to solve nonlinear

differential equations”, arXiv:0812.4423

Ref.She is L. Sheridan, D. Maslov, M. Mosca, “Approximating Fractional Time

Quantum Evolution”, arXiv:0810.3843

Ref.Woc is P. Wocjan, C. Chiang, A. Abeyesinghe, D. Nagaj, “Quantum Speed-up

for Approximating Partition Functions”, arXiv:0811.0596

Ref.Pou is D. Poulin, P. Wocjan, “Sampling from the thermal quantum Gibbs state

and evaluating partition functions with a quantum computer”, arXiv:0905.2199

Ref.Tem is K. Temme, T.J. Osborne, K.G. Vollbrecht, D. Poulin, F. Verstraete,

“Quantum Metropolis Sampling”, arXiv:0911.3635

Ref.TucQusann is R.R. Tucci, “Code Generator for Quantum Simulated Anneal-

ing” , arXiv:0908.1633

Ref.TucOrApprox is R.R. Tucci, “Oracular Approximation of Quantum Multiplex-

ors and Diagonal Unitary Matrices”, arXiv:0901.3851

Ref.TucExact is R.R. Tucci, “Quantum Compiling with Approximation of Multi-

plexors”, arXiv:quant-ph/0412072

3

Ref.Kit is A.Yu.Kitaev, “Quantum measurements and the Abelian Stabilizer Prob-

lem”, quant-ph/9511026

Ref.TucZ is R.R. Tucci “Use of Quantum Sampling to Calculate Mean Values of

Observables and Partition Function of a Quantum System”, arXiv:0912.4402

Ref.TucQOA is R.R. Tucci, “QOperAv, a Code Generator for Generating Quantum

Circuits for Evaluating Certain Quantum Operator Averages”, arXiv:1010.4926

Ref.WikiWBugs is http://en.wikipedia.org/wiki/WinBugs

Ref.TucQuibbs is R.R. Tucci “Quibbs, a Code Generator for Quantum Gibbs Sam-

pling”, arXiv:1004.2205

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, matrices, instructions, steps

or gates. Furthermore, we will abbreviate the phrase “sequence of elementary oper-

ations” by “SEO”. SEOs for quantum computers are often represented by quantum

circuits. In the quantum computing literature, the term “quantum algorithm” usu-

ally means a SEO for quantum computers for performing a desired calculation. Some

quantum algorithms have become standard, such as those due to Deutsch-Jozsa, Shor

and Grover. One can find on the Internet many excellent expositions on quantum

computing.

The quantum circuits that form part of this invention resemble those proposed

prior to this invention in Ref.Har. Most of Ref.Har is preoccupied with encoding

4

the solution of a system of linear equations into the amplitude of a quantum state.

Only at the end (just before Appendix A, on page 5 of Version 3 of Ref.Har) do we

find the following statement:

“Perhaps the most far-reaching generalization of the matrix inversion al-

gorithm is not to invert matrices at all! Instead, it can compute f(A)|b〉
for any computable f . Depending on the degree of nonlinearity of f , non-

trivial tradeoffs between accuracy and efficiency arise. Some variants of

this idea are considered in [4, 12, 20].”

To date, the authors of Ref.Har have not published in arXiv any follow-up papers

developing further the idea expressed in the above quote.

The following are some novel features of this invention over Ref.Har.

1. (different use) This invention is not used for solving systems of linear equations,

so most of Ref.Har is irrelevant to this patent.

2. (lacks important details) The above quote from Ref.Har lacks important de-

tails. For example, it does not specify the nature of |b〉 or how it should be

created, or what types of expected values would be of particular interest and

why.

3. (no V) The circuit 201 of FIG.2 starts the atom qubits in a tensor product state

|x〉 and applies a circuit V to them. The circuit of Ref.Har has no operator

that is a clear counterpart to V . Adding an operator V might seem trivial, but

it is of much practical utility, for instance, in scenarios (a) and (b) of FIG.6,

where V equals a “basis-changer” unitary matrix UΩ, where Ω is a Hermitian

operator whose expected value we seek.

4. (no multiplexor SEO) Ref.Har does not explain how the operator (what we call

a “quantum multiplexor” in this patent) between times 3 and 4 in circuit 201 of

5

FIG.2 can be expanded into a SEO. By “SEO” we mean a sequence of elemen-

tary operations, and by “elementary operations” we mean operations that act

on a few (usually 1, 2 or 3) qubits. In comparison, this invention explains very

explicitly how to expand multiplexors into a SEO. In fact, this patent includes

source code for a computer application called Multiplexor Expander that can

expand multiplexors into a SEO in two different ways: an exact expansion and

an oracular approximation expansion. The computer application Multiplexor

Expander is explained in Ref.QuSann. The theoretical underpinnings of the

oracular approximation expansion are explained in Ref.TucOrApprox. There

are many possible ways of expanding a quantum multiplexor into an exact SEO.

The type of exact expansion that the application Multiplexor Expander gives is

explained in Ref.TucExact. This type of exact expansion is notable because

it uses a low number of elementary operations compared with other possible ex-

act expansions. It uses only 1-qubit and 2-qubit elementary operations, and a

number of 2-qubit operations less than 2c +1, where c is the number of controls

of the multiplexor.

5. (no machine) Ref.Har presents its algorithm in a very abstract way, divorced

from any machine or computer program to implement it. Ref.Har gives no

instructions on how to automate its algorithm, nor does it mention the huge

benefits of doing so. This invention, on the other hand, is all about automating

quantum circuit generation. It’s like the difference between drawing cartoons by

hand, and writing computer software that can produce a Pixar movie. Surely

those who created software automating cartoon drawing invented something

new beyond what hand painters of cartoons did.

References 4,12, 20 mentioned in the above quote are Ref.Chi, Ref.Ley, and

Ref.She. These references use circuits that are significantly different from those used

in this invention, and their circuits are used with a different purpose in mind. Fur-

thermore, just like Ref.Har, they do not give an explicit SEO expansion of quantum

6

multiplexor operators.

As is common practice, we will refer to Z = tr(e−βH) for some real parameter

β and a Hermitian operator H, as a partition function. Evaluating partition functions

is of much interest in physics and chemistry. Prior to Ref.TucZ, various methods had

been proposed for calculating partition functions using a quantum computer. The

most notable work in this regard is Ref.Woc, Ref.Pou and Ref.Tem. The method

of this invention for calculating partition functions is significantly different from the

methods proposed in those references. Ref.Woc and Ref.Pou use a sequence of β

values, whereas this invention doesn’t. Ref.Pou and Ref.Tem propose building a

state ρ = e−βH/Z, whereas this invention doesn’t.

The inventor Tucci first published a description of this invention on Dec. 22,

2010, in Ref.TucZ. Later, he added further details in Ref.TucQOA.

BRIEF SUMMARY OF THE INVENTION

A preferred embodiment of the invention is QOperAv, a computer program written

in Java. Source code for QOperAv1.5 is included with this patent. QOperAv is a

“code generator” for generating quantum circuits. The quantum circuits generated

by QOperAv can be used to evaluate certain quantum operator averages.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows the quantum circuit generated by QOperAv.

FIG.3 shows insides of certain parts of the circuit of FIG.2. In particular, it shows

operator Γ, which is part of the phase estimation algorithm.

7

FIG.4 shows insides of certain parts of the circuit of FIG.2. In particular, it shows

the quantum multiplexor step.

FIG.5 shows Control Panel of QOperAv.

FIG.6 shows various scenarios for which the circuit of FIG.2 is useful.

DETAILED DESCRIPTION OF THE INVENTION

This section describes in detail a preferred embodiment of the invention called QOp-

erAv and other possible embodiments of the invention.

A preferred embodiment of the invention is QOperAv, a computer program

written in Java. Source code for QOperAv1.5 is included with this patent. QOp-

erAv is a “code generator” for generating quantum circuits. The quantum circuits

generated by QOperAv can be used to evaluate certain quantum operator averages.

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. QOperAv1.5 software runs inside

Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box 101 represents input

devices, such as a mouse or a keyboard. Box 102 comprises the CPU, internal and

external memory units. Box 102 does calculations and stores information. Box 103

represents output devices, such as a printer or a display screen. Box 105 represents

a quantum computer, comprising an array of quantum bits and some hardware for

manipulating the state of those bits.

The remainder of this section is divided into 4 subsections. Subsection (A)

describes the quantum circuit generated by QOperAv. Subsection (B) describes QOp-

erAv’s user interface. Subsection (C) discusses possible uses of the invention. Sub-

section (D) discusses other possible embodiments of the invention.

8

(A)QOperAv: Quantum Circuit

In this section, we describe the quantum circuit generated by QOperAv. For a more

detailed description of the circuit, see Ref.TucZ.

201 in FIG.2 is the quantum circuit generated by QOperAv. Let NB and NBj

be positive integers, and let x0 be an element of {0, 1}NB . Circuit 201 operates on

NB + NBj + 1 qubits. Henceforth, we will refer to the top NB qubits as the probe

qubits, to the middle NBj qubits as the atom qubits, and to the single bottom qubit

as the ancilla qubit.

Circuit 201 starts off in an initial state which is a tensor product state of all

the qubits, with the probe qubits in state |0〉, the atom qubits in state |x0〉, and the

ancilla qubit in state |0〉. This initial state is then subjected to various operators.

We will next proceed to describe the nature of each of these operators. Note that the

arrow at the bottom of circuit 201 indicates the direction in which time flows, and

various specific times labeled 1 to 4.

Time 1 occurs immediately after applying to the initial quantum state a single-

qubit Hadamard operator H to each of the probe qubits, and the unitary operator V

to the atom qubits. The user of QOperAv provides a circuit for V as input.

Time 2 occurs immediately after applying the unitary operator Γ to the probe

and atom qubits. The insides of Γ will be described later.

Time 3 occurs immediately after applying to the probe qubits, the Hermitian

conjugate of the well-known quantum Fourier transform operator UFT .

Time 4 occurs immediately after applying what we call in this patent a “quan-

tum multiplexor” to the probe and ancilla qubits. The insides of this quantum mul-

tiplexor will be described later.

Equation 202 defines a quantity µ(x0). Equation 203 gives a way of calculat-

ing µ(x0) by repeatedly making a certain type of measurement on the circuit 201 at

time 4. We call the number of repetitions Nsam (“sam” stands for “samples”). The

binary numbers b(s) for s = 1, 2, . . . , Nsam are the outcomes of the measurement of

9

the ancilla qubit, and γ is a positive real number about which we will say more later.

Equations 301 and 302 of FIG.3 define in two equivalent ways the operator

Γ in FIG.2. Γ acts on the probe and atom qubits. Equations 301 and 302 allude

to an operator UPE. Equation 303 defines the unitary operator UPE in terms of

a Hermitian operator A and a positive real number ∆t. (“PE” stands for ”phase

estimation”). All operations between the initial state and time 3 constitute the so

called “quantum phase estimation” algorithm (first proposed by Kitaev in Ref.Kit).

Equation 401 of FIG.4 shows the quantum multiplexor of FIG.2. Quantum

multiplexors have been discussed by Tucci, for instance, in Ref.TucQuSann. Quan-

tum multiplexors have a target qubit and a set of control qubits. In the case of FIG.2,

the target of the multiplexor is the ancilla qubit and its controls are the probe qubits.

Equation 401 alludes to an operator Rj. Equations 402, 403 and 404 jointly define

the 2-dim rotation Rj. In equation 403, f() is a function from the reals (or perhaps

from just a subset of the reals) to the reals and γ is a positive real.

Let NS = 2NB and NSj = 2NBj . The Hermitian operator A is assumed to have

non-negative eigenvalues. (Given any Hermitian operator A whose eigenvalues are

bounded below, we can shift A by an appropriate constant so that its new eigenvalues

are non-negative.) Furthermore, ∆t is assumed to be small enough that

Ax
∆t

2π
<

NSj − 1

NSj

for all eigenvalues Ax of A. Furthermore, we assume that

0 ≤ γf(
2π j

∆t NSj

) ≤ 1

for j = 0, 1, 2, . . . , NSj − 1.

(B)QOperAv: User Interface

In this section, we describe QOperAv’s user interface. For a more detailed description

of the interface, see Ref.TucQOA.

10

(B1)Input Parameters

QOperAv expects the following inputs:

• NB

• NBj

• γ

• ∆t

• for p = 0, 1, 2, . . . , NBj − 1, a quantum circuit for exp(i2pA∆t): We call the

unitary operator exp(iA∆t) an “atom” and the NB qubits it acts on, the atom

qubits. The demonstration version of QOperAv uses as an atom the circuit for

an NB-qubit quantum Fourier transform, and it raises the atom to the 2p-th

power by placing the atom inside a LOOP that repeats 2p times, but both this

particular atom and this method of raising the atom to a power can be changed

easily by subclassing the class of QOperAv that defines this. In particular,

rather than raising the atom to a power by repeating the atom circuit, the user

could raise the atom to the 2p-th power by replacing the parameter ∆t by 2p∆t

in the atom circuit.

• a quantum circuit for V : The unitary operator V acts on the atom qubits.

The demonstration version of QOperAv uses for V the circuit for an NB-qubit

quantum Fourier transform, but this can be changed easily by subclassing the

class of QOperAv that defines this.

• function f : The demonstration version of QOperAv uses f(ξ) = e−(0.1)ξ, but

this can be changed easily by subclassing the class of QOperAv that defines

this.

11

(B2)Output Files

QOperAv outputs 3 types of files: a Log File, an English File and a Picture File.

A Log File records all the data (inputs and outputs) in the Control Panel

(see FIG.5), so the user won’t forget it.

An English File gives an “in English” description of a quantum circuit. It com-

pletely specifies the output SEO. Each line in it represents one elementary operation,

and time increases as we move downwards in the file.

A Picture File gives an ASCII picture of the quantum circuit. It partially spec-

ifies the output SEO. Each line in it represents one elementary operation, and time

increases as we move downwards in the file. There is a one-to-one onto correspondence

between the rows of corresponding English and Picture Files.

See Ref.TucQuibbs for a detailed description of the content of English and

Picture files and how to interpret that content.

(B3)Control Window

FIG.5 shows the Control Panel for QOperAv. This is the main and only window

of QOperAv (except for the occasional error message window). This window is open

if and only if QOperAv is running. The Control Panel allows the user to enter the

following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the

Write Files button. For example, if the user inserts test in this text field, the

following 3 files will be written:

• test qoa log.txt This is a Log File.

• test qoa eng.txt This is an English File

• test qoa pic.txt This is a Picture File.

Number of Atom Qubits: This equals NB.

12

Number of Probe Qubits: This equals NBj.

gamma: This equals γ.

Delta t/(2*PI): This equals ∆t/(2π).

The Control Panel displays the following output text boxes.

Number of Elementary Operations: This is the number of elementary opera-

tions in the output quantum circuit. If there are no LOOPs, this is the number

of lines in the English File, which equals the number of lines in the Picture File.

If there are loops, the inner part of the loops is counted as many times as the

loop is repeated.

(C)Possible Uses

In this section, we describe some possible uses of the invention.

FIG.6 points out 3 possible scenarios, labeled (a), (b) and (c), in which this

invention could be used. Those experienced in the art might come up with other

possible scenarios or modifications of the scenarios discussed here.

Throughout this section, assume x and y are elements of {0, 1}NB . Let Ω̂ be a

Hermitian operator acting on NB qubits. Let Ωx for all x represent the eigenvalues of

Ω̂. Assume that we have at our disposal some PD (probability distribution) sampler

that allows us to obtain samples x(s) for s = 1, 2, . . . , Nsam of the non-negative function

µ(x). It’s not necessary that
∑

x µ(x) = 1.

The PD-sampler can be a classical or a quantum device or a hybrid of these two

types of devices. An example of a PD-Sampler that runs exclusively on a classical com-

puter is the famous computer program WinBugs (discussed in Ref.WikiWBugs).

An example of a PD-sampler that would use a quantum computer is the one proposed

in Ref.TucQuibbs.

Equation 601 defines the “basis-changer” unitary operator UΩ and a partition

function Z.

13

For scenario (a), replace the V , A and f() in equation 202 by those given in

line 602. This gives equation 603 for µ(x). We can use the PD-sampler to sample

this µ(x) that is calculated by QOperAv. This procedure and equation 604 can be

used to estimate tr(Ωρ).

For scenario (b), replace the V , A and f() in equation 202 (where β is some

positive number) by those given in line 605. This gives equation 606 for µ(x). We

can use the PD-sampler to sample this µ(x) that is calculated by QOperAv. This

procedure and equation 607 can be used to estimate tr(Ωρ), where ρ is the density

matrix proportional to e−βH .

For scenario (c), replace the V , A and f() in equation 202 (where β is some

positive number) by those given in line 608. This gives equation 609 for µ(x). We

can use the PD-sampler to sample this µ(x) that is calculated by QOperAv. This

procedure and equations 610, 611 can be used to obtain an estimate of the partition

function Z.

(D)Other Embodiments

In this section, we describe other possible embodiments of the invention.

Some conditions which are not necessary for the operation of QOperAv or

other embodiments of this invention, but which would be advantageous if they were

satisfied, are as follows. The conditions are that the function f() be simple (that

is, that it be calculable with polynomial efficiency), and that the operators V and

exp(i2pA∆t) be compilable with polynomial efficiency (that is, that they can be

expanded into a SEO whose length scales polynomially in the number of atom qubits).

Of course, QOperAv could have been written in a computer language other

than Java.

The quantum circuit generated by QOperAv includes some quantum multi-

plexors. The Java application Multiplexor Expander (see Ref.TucQusann) allows

the user to replace each of those multiplexors by a sequence of more elementary gates

14

such as multiply controlled NOTs and qubit rotations. Multiplexor Expander source

code is included with this patent. Another perhaps more efficient variation would be

if QOperAv didn’t write a given multiplexor in the English File, but rather wrote

instead a SEO that was either exactly or approximately equal to the multiplexor.

The quantum circuit generated by QOperAv and Multiplexor Expander may

include some multiply controlled NOTs. The Java application MultiCNot Expander,

whose source code is included with this patent, allows the user to replace each of

those multiply controlled NOTs by a sequence of more elementary gates such as

singly controlled NOTs and qubit rotations.

A version of QOperAv could forgo writing the English or Picture Files and

feed the SEO directly to the quantum computer.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

15

I claim:

1. A method of operating a classical computer to calculate a total SEO, wherein

said total SEO depends on a positive real number ∆t, a unitary operator V ,

a Hermitian operator A, and a function f(), wherein said total SEO acts on

NB atom qubits, some probe qubits, and one ancilla qubit, wherein said total

SEO is calculated with the purpose of applying said total SEO to a quantum

computer to induce said quantum computer to yield readings that facilitate the

calculation of an estimate of the quantity µ(x0) equal to 〈x0|V †f(A)V |x0〉 for a

predetermined point x0 in {0, 1}NB , said method comprising the steps of:

storing in said classical computer a data trove comprising:

sufficient information to generate a V-SEO that approximates V ,

sufficient information to generate for a multiplicity of non-negative inte-

gers p, a SEO that approximates exp(i2pA∆t),

calculating using said classical computer and using said data trove, a phase-

estimation-SEO that encodes information about the eigenvalues of A into

the state of said probe qubits,

calculating using said classical computer and using said data trove, a multiplexor-

SEO, wherein said multiplexor-SEO is a SEO which approximately equals

a quantum multiplexor operator whose controls are said probe qubits and

whose target is said ancilla qubit, wherein the parameters of said quantum

multiplexor operator depend on said function f(),

wherein said total SEO contains said V-SEO, said phase-estimation-SEO, and

said multiplexor-SEO.

2. The method of claim 1, wherein said multiplexor-SEO is an exact expansion

which is exactly equal to said quantum multiplexor operator, wherein said ex-

act expansion uses only 1-qubit and 2-qubit elementary operations, and uses a

16

number of 2-qubit operations less than 2c +1, where c is the number of controls

of said quantum multiplexor operator.

3. The method of claim 1, wherein said multiplexor-SEO is an oracular approxi-

mation expansion of said quantum multiplexor operator.

4. The method of claim 1, wherein every elementary operation of said multiplexor-

SEO acts on less than 3 qubits, wherein said multiplexor-SEO has a number of

2-qubit operations less than 2c + 1, where c is the number of said probe qubits.

5. The method of claim 1, wherein V equals a basis changer unitary operator UΩ

for a Hermitian operator Ω, A equals a density matrix ρ, and f(ξ) = ξ.

6. The method of claim 5, also utilizing a PD-sampler, comprising the additional

steps of

using said PD-sampler to obtain a set of points x distributed according to

µ(x),

using said set of points to estimate tr(Ωρ).

7. The method of claim 1, wherein V equals a basis changer unitary operator UΩ,

A equals a Hermitian operator H, and f(ξ) = e−βξ for some predetermined real

number β.

8. The method of claim 7, also utilizing a PD-sampler, comprising the additional

steps of

using said PD-sampler to obtain a set of points x distributed according to

µ(x),

using said set of points to estimate tr(Ωρ), where ρ is the density matrix

proportional to e−βH .

9. The method of claim 1, wherein V = 1, A equals a Hermitian operator H, and

f(ξ) = e−βξ for some predetermined real number β.

17

10. The method of claim 9, also utilizing a PD-sampler, comprising the additional

steps of

using said PD-sampler to obtain a set of points x distributed according to

µ(x),

using said set of points to estimate Z = tr(e−βH).

11. A device that calculates a total SEO, wherein said total SEO depends on a

positive real number ∆t, a unitary operator V , a Hermitian operator A, and

a function f(), wherein said total SEO acts on NB atom qubits, some probe

qubits, and one ancilla qubit, wherein said total SEO is calculated with the

purpose of applying said total SEO to a quantum computer to induce said

quantum computer to yield readings that facilitate the calculation of an estimate

of the quantity µ(x0) equal to 〈x0|V †f(A)V |x0〉 for a predetermined point x0 in

{0, 1}NB , said device comprising:

a memory arranged to store a data trove comprising:

sufficient information to generate a V-SEO that approximates V ,

sufficient information to generate for a multiplicity of non-negative inte-

gers p, a SEO that approximates exp(i2pA∆t),

a processor arranged to calculate using said data trove stored in said memory:

a phase-estimation-SEO that encodes information about the eigenvalues

of A into the state of said probe qubits,

a multiplexor-SEO, wherein said multiplexor-SEO is a SEO which ap-

proximately equals a quantum multiplexor operator whose controls

are said probe qubits and whose target is said ancilla qubit, wherein

the parameters of said quantum multiplexor operator depend on said

function f(),

18

wherein said total SEO contains said V-SEO, said phase-estimation-SEO, and

said multiplexor-SEO.

12. The device of claim 11, wherein said multiplexor-SEO is an exact expansion

which is exactly equal to said quantum multiplexor operator, wherein said ex-

act expansion uses only 1-qubit and 2-qubit elementary operations, and uses a

number of 2-qubit operations less than 2c +1, where c is the number of controls

of said quantum multiplexor operator.

13. The device of claim 11, wherein said multiplexor-SEO is an oracular approxi-

mation expansion of said quantum multiplexor operator.

14. The device of claim 11, wherein every elementary operation of said multiplexor-

SEO acts on less than 3 qubits, wherein said multiplexor-SEO has a number of

2-qubit operations less than 2c + 1, where c is the number of said probe qubits.

15. The device of claim 11, wherein V equals a basis changer unitary operator UΩ

for a Hermitian operator Ω, A equals a density matrix ρ, and f(ξ) = ξ.

16. The device of claim 15, further comprising:

a PD-sampler that yields a set of points x distributed according to µ(x),

a processor arranged to use said set of points to calculate an estimate of tr(Ωρ).

17. The device of claim 11, wherein V equals a basis changer unitary operator UΩ,

A equals a Hermitian operator H, and f(ξ) = e−βξ for some predetermined real

number β.

18. The device of claim 17, further comprising:

a PD-sampler that yields a set of points x distributed according to µ(x),

a processor arranged to use said set of points to calculate an estimate of tr(Ωρ),

where ρ is the density matrix proportional to e−βH .

19

19. The device of claim 11, wherein V = 1, A equals a Hermitian operator H, and

f(ξ) = e−βξ for some predetermined real number β.

20. The device of claim 19, further comprising:

a PD-sampler that yields a set of points x distributed according to µ(x),

a processor arranged to use said set of points to calculate an estimate of Z =

tr(e−βH).

20

ABSTRACT

We describe a method for using a classical computer to generate a sequence of elemen-

tary operations (SEO) that can be used to operate a quantum computer. A quantum

computer operating under such a SEO can be used to evaluate certain quantum op-

erator averages.

21

