
Method For Sampling Probability Distributions

Using a Quantum Computer

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

October 1, 2010

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing appendix contained in a single compact disc (CD) is

included herewith and incorporated by reference herein. The CD is in IBM-PC format

and was burned with a computer running the Windows 98 operating system. The

CD contains a single file titled quibbs1-4.txt, in ASCII format, of size 512 KBytes,

burnt onto the CD on Sept 27, 2010.

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

The invention also relates to methods for sampling a probability distribution and

classical probabilistic networks (called classical Bayesian networks).

2

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.BNets is http://en.wikipedia.org/wiki/Bayesian network

Ref.GSamp is “Rapid Sampling Through Quantum Computing” by Lov Grover,

ariv:quant-ph/9912001

Ref.GPat is “Fast Quantum Mechanical Algorithms”, US Patent 6,317,766, by Lov

K. Grover

Ref.GWiki is http://en.wikipedia.org/wiki/Grover’s algorithm

Ref.TexasPat is “Quantum Circuit Design for Grover’s Algorithm”, US Patent

7,028,275, by G. Chen, Z. Diao, M. Zubairy

Ref.Som is “Quantum Simulated Annealing” by R. Somma, S. Boixo, H. Barnum,

arXiv:0712.1008

Ref.Woc is “Speed-up via Quantum Sampling” by Pawel Wocjan, Anura Abeyesinghe,

arXiv:0804.4259

Ref.GPi/3 is “A Different Kind of Quantum Search” by Lov Grover, arXiv:quant-

ph/0503205

Ref.TucQusann is “Code Generator for Quantum Simulated Annealing” by R.R.

Tucci, arXiv:0908.1633

Ref.TucQuibbs1 is “Quantum Gibbs Sampling Using Szegedy Operators” by R.R.

Tucci, arXiv:0910.1647

Ref.TucAfga is “An Adaptive, Fixed-Point Version of Grover’s Algorithm” by R.R.

Tucci, arXiv:1001.5200.

3

Ref.TucQuibbs2 is “Quibbs, a Code Generator for Quantum Gibbs Sampling” by

R.R. Tucci, arXiv:1004.2205

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, instructions, steps or gates.

Furthermore, we will abbreviate the phrase “sequence of elementary operations” by

“SEO”. SEOs are often represented as quantum circuits. In the quantum computing

literature, the term “quantum algorithm” usually means a SEO for quantum com-

puters for performing a desired calculation. Some quantum algorithms have become

standard, such as those due to Deutsch-Jozsa, Shor and Grover. One can find on the

Internet many excellent expositions on quantum computing.

This invention also deals with sampling a probability distribution. Given a

probability distribution Px() defined for all points x in some domain val(x), sampling

Px() means obtaining a collection {x(1), x(2), . . . , x(Nsam)} of points in val(x) which are

distributed according to Px(). If one can obtain such a collection of points, one can

use it to evaluate approximately the expected value of any function defined on val(x).

Hence, sampling a probability distribution is very useful. If the points x ∈ val(x)

have dim(x) components, and dim(x) is very high, then sampling Px() becomes very

difficult. The reason is that the majority of the sample points x(j) will come from

those regions of val(x) where Px() is high, but finding those regions requires that we

explore the entire set val(x). When dim(x) is high, set val(x) is huge, because its

volume grows exponentially with dim(x).

4

The preferred embodiment of this invention uses a Bayesian network to specify

Px(). Bayesian networks are described, for example, in Ref.BNets.

There are several standard techniques for sampling probability distributions

using a classical computer (for instance, Monte Carlo techniques like Gibbs sam-

pling and Metropolis-Hastings sampling). This invention differs from those standard

techniques in that we propose using a quantum computer to generate the sample of

points. This is an exciting possibility to the inventor Tucci for the following reasons.

Quantum computers use quantum mechanics, which has probabilities built into it, so

doing Monte Carlo tricks should come natural to a quantum computer. Furthermore,

systems in a quantum mechanical state have a knack for being in many places at

once, so one suspects that quantum computers can explore large spaces like val(x)

much faster than classical computers can.

Grover in Ref.GSamp seems to have been the first to propose a method

for sampling probability distributions using a quantum computer. Let us call his

method GSamp for short. In a nutshell, GSamp applies the so called Grover’s “search”

Algorithm (the one discussed in Ref.GPat and Ref.GWiki) to NB + 1 qubits, using

the starting state

|s′〉 = |0NB〉 ⊗ |0〉

and the target state

|t〉 =
1√
2NB

∑
x

|x〉 ⊗
(√

Px(x)|0〉+
√

1− Px(x)|1〉
)

,

where the sum is over all x ∈ {0, 1}NB . Once this starting state is driven into this

target state, one measures the target state to sample Px(x). A serious defect of GSamp

is that its target state is useless for sampling Px(x), because it has a vanishingly small

amplitude of size O(1/
√

2NB) for all x. The preferred embodiment of this invention,

which we call Quibbs, does not suffer from this defect because its target state is

5

|t〉 =
∑
x

√
Px(x)|x〉 ⊗ |0〉.

Thus, Quibbs’ target state has a finite amplitude at those x for which Px(x) is finite.

Some previous patents (see Ref.GPat and Ref.TexasPat) use Grover’s search

algorithm, but they do not mention in their claims or specification its use for sampling

a probability distribution.

Beside Ref.GSamp, Ref.Som and Ref.Woc have also given methods for sam-

pling probability distributions with a quantum computer. Ref.Som uses the quantum

Zeno effect, whereas Ref.Woc uses Grover’s pi/3 algorithm (the one in Ref.GPi/3).

The present invention uses neither the quantum Zeno effect, nor Grover’s pi/3 algo-

rithm. It uses more efficient techniques instead.

Ref.Som and Ref.Woc are both concerned with optimization (via simulated

annealing) of a non-negative function E(x) defined for all x, whereas the present in-

vention is concerned with sampling an arbitrary probability distribution Px(x). Even

though optimization and sampling are related and share some common techniques,

they are not the same thing. For instance, sampling allows you to find the expected

value of any function of x, whereas optimization doesn’t. Optimization allows you to

find a good minimum of E(x) whereas sampling alone doesn’t.

The inventor Tucci first published a description of this invention on Oct. 9,

2009, in Ref.TucQuibbs1. Later, he added further details in Ref.TucAfga and

Ref.TucQuibbs2.

BRIEF SUMMARY OF THE INVENTION

A preferred embodiment of the invention is Quibbs, a computer program written in

Java. Source code for Quibbs1.4 is included with this patent. Quibbs is a “code

generator” for quantum sampling: after the user inputs some files that specify a

classical Bayesian network, Quibbs outputs a quantum circuit for sampling, using

a quantum computer, the probability distribution which characterizes the Bayesian

6

network.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows the quantum circuit generated by Quibbs.

FIG.3 shows insides of parts in FIG.2

FIG.4 shows insides of parts in FIG.3

FIG.5 shows insides of parts in FIG.4

FIG.6 shows Control Panel of Quibbs.

FIG.7 shows the Parents File for a Bayesian net with graph A → B ← C.

FIG.8 shows a States File for a Bayesian net with 3 nodes called A,B and C.

FIG.9 shows a Probabilities File for a Bayesian net with Parents File given by FIG.7

and States File given by FIG.8.

FIG.10 shows an example of a Log File.

FIG.11 shows an example of an English File.

FIG.12 shows an example of a Picture File.

DETAILED DESCRIPTION OF THE INVENTION

This section describes in detail a preferred embodiment of the invention called Quibbs

and other possible embodiments of the invention.

7

Quibbs is a computer program written in Java. Source code for Quibbs1.4 is

included with this patent. Quibbs is a “code generator” for quantum sampling: after

the user inputs some files that specify a classical Bayesian network, Quibbs outputs a

quantum circuit for sampling, using a quantum computer, the probability distribution

which characterizes the Bayesian network.

The Bayesian network being considered will be characterized by a random

variable x that can take on values in a set val(x) and has a full probability distribution

Px(). (val(x) is often called the sample space of x). If the Bayesian network has Nnds

nodes, then x = (x1, x2, . . . , xNnds
), where random variable xj ∈ val(xj) corresponds

to the j’th node. Without loss of generality, we will take val(xj) = {0, 1}NBj for some

positive integer NBj, and val(x) = {0, 1}NB , where NB =
∑

j NBj.

Henceforth we will say |v〉 is a unit vector if 〈v|v〉 = 1. Consider two unit

vectors |v1〉 and |v2〉 and let D = ||v1〉 − |v2〉|2. We will say that |v1〉 and |v2〉 are

approximately equal to each other if D is significantly smaller than one. We will say

that they are equal if D = 0. We will say that |v1〉 and |v2〉 are equal (respectively,

approximately equal) up to a phase factor if there is some real number α such that

|v1〉 and eiα|v2〉 are equal (respectively, approximately equal). We will say that |v1〉
is an approximate eigenvector of an operator Ω if there exist a vector |v2〉 which is an

eigenvector of Ω and |v1〉 is approximately equal to |v2〉.
Henceforth, we will use the acronym AFGA (Adaptive Fixed-point Grover’s

Algorithm) for the algorithm described in Ref.TucAfga.

Consider any operator of the form Ω = exp(iα|v〉〈v|) where α is a real number

and where |v〉 is a unit vector. Note that Ω has only two distinct eigenvalues, namely

exp(iα) and 1. In fact, |v〉 is an eigenvector of Ω with eigenvalue exp(iα), whereas

any vector orthogonal to |v〉 has eigenvalue 1. The original Grover’s algorithm (the

one in Ref.GWiki) uses operators of the form Ω, with α equal to π or −π. Grover’s

pi/3 algorithm (the one in Ref.GPi/3) uses operators of the form Ω, with α equal to

π/3 or −π/3. AFGA, on the other hand, uses operators of the form Ω, with α equal

8

to αj or ∆λ where αj tends to zero as j tends to infinity.

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. Quibbs1.4 software runs inside

Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box 101 represents input

devices, such as a mouse or a keyboard. Box 102 comprises the CPU, internal and

external memory units. Box 102 does calculations and stores information. Box

103 represents output devices, such as a printer or a display screen. The inputs

and outputs of Quibbs can be rendered on the display screen. Box 105 represents

a quantum computer, comprising an array of quantum bits and some hardware for

manipulating the state of those bits.

The remainder of this section is divided into 3 subsections. Subsection (A)

describes the quantum circuit generated by Quibbs. Subsection (B) describes Quibbs’

user interface. Subsection (C) discusses other possible embodiments of the invention.

(A)Quibbs: Quantum Circuit

In this section, we describe the quantum circuit generated by Quibbs. For a more

detailed description of the circuit, see Ref.TucQuibbs1 and Ref.TucAfga.

201 in FIG.2 is the quantum circuit generated by Quibbs. Let a, c, NB and

Nste be some positive integers, and let x0 be an element of {0, 1}NB . Circuit 201

operates on ac + 2NB qubits. Circuit 201 starts off in an initial state which is a

tensor product state of the ac + 2NB qubits, with the top ac + NB qubits in state |0〉
and the bottom NB qubits in state |x0〉. This initial state is then subjected to Nste+1

operators (“ste” stands for step). We will next proceed to describe the nature of each

of these Nste + 1 operators.

Each of the boxes in circuit 201 is a product of two operators, R̃
(j)
beg and R̃tar.

“beg” stands for “beginning” and “tar” for “target”. Note that R̃
(j)
beg depends on the

step number j (an integer which ranges from 0 to Nste), whereas R̃tar doesn’t depend

on it. According to equation 202, even though R̃
(j)
beg acts on all the ac + 2NB qubits,

9

it can be expressed exactly as operator which acts as the identity on the top ac qubits

and another operator R
(j)
beg which acts only on the bottom 2NB qubits. FIG.3, which

will be discussed in more detail later, gives an exact circuit equivalent, namely circuit

301, for R̃tar. We see that R̃tar cannot be expressed exactly in terms of an operator

which acts as the identity on the top ac qubits. However, according to equation 203,

R̃tar can be approximated by an operator which acts as the identity on the top ac

qubits and another operator Rtar which acts only on the bottom 2NB qubits.

Let ∆λ be a real number between 0 and π, and let {αj}∞j=0 be a sequence of real

numbers. ∆λ can be selected by the user. Ref.TucAfga explains how to calculate the

angles αj and gives an Octave/Matlab program called afga.m that calculates them

explicitly.

Equation 204 defines R
(j)
beg in terms of the state |s′〉 and the angles αj. Equation

205 defines Rtar in terms of the state |t〉 and the angle ∆λ. State |s′〉 is defined by

equation 206, and state |t〉 is defined by equation 207. Equation 208 defines the

state |√π〉, where π() = Px(). Equation 209 stipulates that the state |FIN〉 defined

by Equation 201 must be approximately equal (up to a phase factor eiα) to a state

which is a tensor product of |0〉 for each of the top ac + NB qubits and |√π〉 for the

bottom NB qubits.

R̃tar is defined exactly by the quantum circuit 301 in FIG.3. Circuit 301 uses

two operators called V and Q. These are defined explicitly by equations 302 and

303. In equation 303, H is the 1-qubit Hadamard matrix. Equation 303 also uses

various powers of an operator W that will be defined explicitly in the next figure.

W is a so called Szegedy quantum walk operator. Equation 401 in FIG.4

defines W in terms of operators U , π̂ and π̌. The projection operators π̂ and π̌ are

defined by equations 402 and 403, respectively. The operator U can be defined in

various ways, as long as it satisfies equation 404. One particular way of defining U

is described in Ref.TucQuibbs1, and implemented explicitly in the Quibbs source

code included with this patent. But what are the eigenvectors |mj〉 and eigenvalues

10

mj alluded to in equation 404? As stated in equation 405, they are the eigenvectors

and eigenvalues of an operator Mhyb that will be defined in the next figure.

Equation 501 in FIG.5 defines the operator Mhyb. (“hyb” stands for “hybrid”).

Equation 501 uses two operators called Λ1 and Λ2. The matrix elements of Λ1 and

Λ2 are defined by equation 502, in terms of the matrix elements of two operators

called M1 and M2. The matrix elements of M1 and M2 are defined in terms of certain

conditional probabilities of Px(x). Suppose x = (x1, x2, . . . , xNnds
). When Nnds = 3,

the matrix elements of M1 and M2 are defined by equations 503 and 504. For

arbitrary Nnds, the matrix elements of M1 and M2 are defined using the same pattern

as in this Nnds = 3 example.

(B)Quibbs: User Interface

In this section, we describe Quibbs’ user interface. For more a more detailed descrip-

tion of the interface, see Ref.TucQuibbs2.

(B1)The Control Panel

FIG.6 shows the Control Panel for Quibbs. This is the main and only window of

Quibbs (except for the occasional error message window). This window is open if and

only if Quibbs is running.

The Control Panel allows the user to enter the following inputs:

I/O Folder: The user enters in this text box the name of a folder. The folder will

contain Quibbs’ input and output files for the particular Bayesian network that

the user is currently considering.

To generate a quantum circuit, the I/O folder must contain the following 3

input files:

(In1) parents.txt

(In2) states.txt

11

(In3) probs.txt

Examples of In1, In2 and In3 will be presented later. For this section, all the

reader needs to know is that: The parents.txt file lists the parent nodes of

each node of the Bayesian net being considered. The states.txt file lists the

names of the states of each node of the Bayesian net. And the probs.txt file

gives the probability matrix for each node of the Bayesian net. Together, the

In1, In2 and In3 files fully specify the Bayesian network being considered.

In the example of FIG.6, “3nodes” is entered in the I/O Folder text box. A

folder called “3nodes” comes with the distribution of Quibbs. It contains, among

other things, In1, In2, In3 files that specify one possible Bayesian network with

3 nodes.

When the user presses the Read Bayesian Net button, Quibbs reads files In1,

In2 and In3. The program then creates data structures that contain complete

information about the Bayesian network. Furthermore, Quibbs fills the scrol-

lable list in the Starting State grouping with information that specifies “the

starting state”. The starting state is one particular instantiation (i.e., a partic-

ular state for each node) of the Bayesian network x. The point x0 introduced

before can be calculated from the starting state. Each row of the scrollable

list names a different node, and a particular state of that node. For example,

FIG.6 shows the Quibbs Control Panel immediately after pressing the Read

Bayesian Net button. In this example, the Bayesian net read in has 3 nodes

called A,B and C, and the starting state has node A in state a1, node B in

state b1 and node C in state c1.

If the user presses the Random Start button, the starting state inside the

scrollable list is changed to a randomly generated one. Alternative, the user

can choose a specific state for each node of the Bayesian net by using the Node

State Menu, the menu immediately to the left of the Random Start button.

12

Number of Probe Bits (for each PE step): This is the parameter a = 1, 2, 3, . . .

for the operator V .

Number of Phase Estimation (PE) Steps: This is the parameter c = 1, 2, 3, . . .

for the operator V .

Maximum Number of Grover Steps: Quibbs will stop iterating the AFGA if it

reaches this number of iterations.

Gamma Tolerance (degs): This is an angle given in degrees. Quibbs will stop

iterating the AFGA if the absolute value of γj becomes smaller than this toler-

ance. (γj is an angle in AFGA that tends to zero as the step index j tends to

infinity. γj quantifies how close the AFGA is to reaching the target state).

Delta Lambda (degs): This is the angle ∆λ of AFGA, given in degrees.

Once Quibbs has successfully read files In1, In2 and In3, and once the user

has filled all the text boxes in the Inputs grouping, the user can successfully press

the Write Q. Circuit Files button. This will cause Quibbs to write the following

output files within the I/O folder:

(Out1) quibbs log.txt

(Out2) quibbs eng.txt

(Out3) quibbs pic.txt

Examples of these 3 output files will be given later. For now, all the reader needs

to know is that: The quibbs log.txt file records all the input and output param-

eters that the user entered into the Control Panel, so the user won’t forget them.

The quibbs eng.txt file is an “in English” description of a quantum circuit. And

the quibbs pic.txt file translates, line for line, the English description found in

quibbs eng.txt into a “pictorial” description.

13

The Control Panel displays the following output text boxes. (The Starting

Gamma (degs) output text box and the Prob. of Starting State output text

box are both filled as soon as a starting state is given in the inputs. The other output

text boxes are filled when the user presses the Write Q. Circuit Files button.)

Starting Gamma (degs): This is γ ∈ [0, π], defined to satisfy cos(γ/2) = 〈s′|t〉 =
√

Px(x0), where Px(x0) is called the Prob. of Starting State.

Prob. of Starting State: This is the probability Px(x0), which must be nonzero for

AFGA to work. The probability distribution Px(), and point x0 were introduced

before.

Number of Qubits: This is the total number of qubits used by the quantum circuit,

equal to ac + 2NB.

Number of Elementary Operations: This is the number of elementary opera-

tions in the output quantum circuit.

(B2)Input Files

As explained earlier, for Quibbs to generate quantum circuit files, it needs to first read

3 input files: the Parents File called parents.txt, the States File called states.txt,

and the Probabilities File called probs.txt. These 3 input files must be placed inside

the I/O folder. Next we give examples of these 3 input files.

FIG.7 shows the Parents File for a Bayesian net with graph A → B ← C. In

this example, nodes A and C have no parents and node B has parents A and C.

FIG.8 shows a States File for a Bayesian net with 3 nodes called A,B and C.

In this example, node A has 3 states called a1, a2 and a3, node B has 2 states called

b1 and b2, and node C has 2 states called c1 and c2.

FIG.9 shows a Probabilities File for a Bayesian net with Parents File given by

FIG.7 and States File given by FIG.8. In this example, PA(a1) = 0.2, PB|A,C(b1|a1, c1) =

0.7, etc.

14

(B3)Output Files

As explained earlier, when the user presses the Write Q. Circuit Files button,

Quibbs writes 3 output files within the I/O folder: a Log File called quibbs log.txt,

an English File called quibbs eng.txt, and a Picture File called quibbs pic.txt.

Next we give examples of these 3 output files.

FIG.10 is an example a Log File. A Log File records all the information found

in the Control Panel.

FIG.11 is an example of an English File. An English File completely specifies

the output SEO. It does so “in English”, thus its name. Each line represents one

elementary operation, and time increases as we move downwards. Ref.TucQuibbs2

explains in detail how to interpret an English File.

FIG.12 is an example of a Picture File. A Picture File partially specifies the

output SEO. It gives an ASCII picture of the quantum circuit. Each line represents

one elementary operation, and time increases as we move downwards. There is a

one-to-one onto correspondence between the rows of the English and Picture Files.

Ref.TucQuibbs2 explains in detail how to interpret a Picture File.

(C)Other Embodiments

In this section, we describe other possible embodiments of the invention.

Of course, Quibbs could have been written in a computer language other than

Java.

The quantum circuit generated by Quibbs includes some quantum multiplex-

ors. The Java application Multiplexor Expander (see Ref.TucQusann) allows the

user to replace each of those multiplexors by a sequence of more elementary gates

such as multiply controlled NOTs and qubit rotations. Multiplexor Expander source

code is included with this patent. Another perhaps more efficient variation would

be if Quibbs didn’t write a given multiplexor in the English File, but rather wrote

instead a SEO that was either exactly or approximately equal to the multiplexor.

15

The quantum circuit generated by Quibbs includes some multiply controlled

NOTs. The Java application MultiCNot Expander, whose source code is included

with this patent, allows the user to replace each of those multiply controlled NOTs

by a sequence of more elementary gates such as singly controlled NOTs and qubit

rotations.

A version of Quibbs could forgo writing the English or Picture Files and feed

the SEO directly to the quantum computer.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

16

I claim:

1. A method of operating a classical computer to calculate a total SEO, with the

purpose of using said total SEO to operate a quantum computer, and to induce

said quantum computer to approximately sample a probability distribution π(x)

defined for all x ∈ {0, 1}NB , said method comprising the steps of:

storing in said classical computer a data trove comprising a positive number

ε, a point x0 ∈ {0, 1}NB such that π(x0) is nonzero, and a data-set that

specifies said probability distribution π(x),

calculating using said classical computer and using said data trove, a sequence

of unitary operators U0, U1, U2, . . . , UM , wherein M depends on ε, wherein

there are unit vectors |Φ1〉 and |Φ2(x)〉 such that if ERR = ||v1〉 − |v2〉|2

where |v1〉 = UM . . . U1U0|x0〉 ⊗ |Φ1〉 and |v2〉 =
∑

x

√
π(x)|x〉 ⊗ |Φ2(x)〉,

then ERR ≤ ε,

calculating using said classical computer for each j = 0, 1, 2, . . . M , a SEO Σj

corresponding to Uj, wherein said total SEO equals the product ΣM . . . Σ1Σ0.

2. The method of claim 1, wherein said data trove comprises a net data-set that

specifies a Bayesian network with full probability distribution equal to said π(x),

wherein said net data-set comprises:

(a) a data-set that characterizes the possible states of each node of said Bayesian

network,

(b) a data-set that characterizes the parent nodes of each node of said Bayesian

network,

(c) a data-set that characterizes a multiplicity of conditonal probabilities asso-

ciated with each node of said Bayesian network.

17

3. The method of claim 1, wherein if A is the subset of {0, 1, 2, . . . M} such that for

all j in A, Uj has only two distinct eigenvalues λ1j and λ2j such that the product

λ1jλ
∗
2j is not in the set {eiπ/3, e−iπ/3,−1}, then A has 3 or more elements.

4. The method of claim 3, wherein A has about M elements.

5. The method of claim 1, wherein for each j = 0, 1, 2, . . . M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

6. The method of claim 1, further utilizing a quantum computer, comprising the

additional step of:

operating said quantum computer according to said total SEO.

7. The method of claim 1, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |x〉 ⊗ |α〉 for some state |α〉, as

an approximate eigenvector, and unitary operators that have
∑

x

√
π(x)|x〉⊗|β〉

for some state |β〉, as an approximate eigenvector.

8. A device that calculates a total SEO, with the purpose of using said total

SEO to operate a quantum computer, and to induce said quantum computer

to approximately sample a probability distribution π(x) defined for all x ∈
{0, 1}NB , said device comprising:

a memory arranged to store a data trove comprising a positive number ε, a

point x0 ∈ {0, 1}NB such that π(x0) is nonzero, and a data-set that specifies

said probability distribution π(x),

a processor arranged to calculate using said data trove stored in said memory,

a sequence of unitary operators U0, U1, U2, . . . , UM , wherein M depends

on ε, and arranged to calculate for each j = 0, 1, 2, . . . M , a SEO Σj cor-

responding to Uj, wherein there are unit vectors |Φ1〉 and |Φ2(x)〉 such

that if ERR = ||v1〉 − |v2〉|2 where |v1〉 = UM . . . U1U0|x0〉 ⊗ |Φ1〉 and

18

|v2〉 =
∑

x

√
π(x)|x〉 ⊗ |Φ2(x)〉, then ERR ≤ ε, wherein said total SEO

equals the product ΣM . . . Σ1Σ0.

9. The device of claim 8, wherein said data trove comprises a net data-set that

specifies a Bayesian network with full probability distribution equal to said π(x),

wherein said net data-set comprises:

(a) a data-set that characterizes the possible states of each node of said Bayesian

network,

(b) a data-set that characterizes the parent nodes of each node of said Bayesian

network,

(c) a data-set that characterizes a multiplicity of conditonal probabilities asso-

ciated with each node of said Bayesian network.

10. The device of claim 8, wherein if A is the subset of {0, 1, 2, . . . M} such that for

all j in A, Uj has only two distinct eigenvalues λ1j and λ2j such that the product

λ1jλ
∗
2j is not in the set {eiπ/3, e−iπ/3,−1}, then A has 3 or more elements.

11. The device of claim 10, wherein A has about M elements.

12. The device of claim 8, further comprising a quantum computer that operates

according to said total SEO.

13. The device of claim 8, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |x〉 ⊗ |α〉 for some state |α〉, as

an approximate eigenvector, and unitary operators that have
∑

x

√
π(x)|x〉⊗|β〉

for some state |β〉, as an approximate eigenvector.

14. A method of operating a classical computer to calculate a total SEO, with the

purpose of using said total SEO to operate a quantum computer, and to induce

said quantum computer to approximately sample a probability distribution π(x)

defined for all x ∈ {0, 1}NB , said method comprising the steps of:

19

storing in said classical computer a data trove comprising a positive number

ε, and a data-set that specifies a multiplicity of conditional probabilities

of said π(x),

calculating using said classical computer and using said data trove, a sequence

of unitary operators U0, U1, U2, . . . , UM , wherein M depends on ε, wherein

there are unit vectors |Φ1〉 and |Φ2(x)〉 such that if ERR = ||v1〉 − |v2〉|2

where |v1〉 = UM . . . U1U0|Φ1〉 and |v2〉 =
∑

x

√
π(x)|x〉 ⊗ |Φ2(x)〉, then

ERR ≤ ε,

calculating using said classical computer for each j = 0, 1, 2, . . . M , a SEO Σj

corresponding to Uj, wherein said total SEO equals the product ΣM . . . Σ1Σ0.

15. The method of claim 14, wherein if A is the subset of {0, 1, 2, . . . M} such

that for all j in A, Uj has only two distinct eigenvalues λ1j and λ2j such that

the product λ1jλ
∗
2j is not in the set {eiπ/3, e−iπ/3,−1}, then A has 3 or more

elements.

16. The method of claim 15, wherein A has about M elements.

17. The method of claim 14, wherein for each j = 0, 1, 2, . . . M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

18. The method of claim 14, further utilizing a quantum computer, comprising the

additional step of:

operating said quantum computer according to said total SEO.

19. The method of claim 14, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |x〉 ⊗ |α〉 for some state |α〉, as

an approximate eigenvector, and unitary operators that have
∑

x

√
π(x)|x〉⊗|β〉

for some state |β〉, as an approximate eigenvector.

20

20. A device that calculates a total SEO, with the purpose of using said total

SEO to operate a quantum computer, and to induce said quantum computer

to approximately sample a probability distribution π(x) defined for all x ∈
{0, 1}NB , said device comprising:

a memory arranged to store a data trove comprising a positive number ε, and

a data-set that specifies a multiplicity of conditional probabilities of said

π(x),

a processor arranged to calculate using said data trove stored in said memory, a

sequence of unitary operators U0, U1, U2, . . . , UM , wherein M depends on ε,

and arranged to calculate for each j = 0, 1, 2, . . .M , a SEO Σj correspond-

ing to Uj, wherein said total SEO equals the product ΣM . . . Σ1Σ0, wherein

there are unit vectors |Φ1〉 and |Φ2(x)〉 such that if ERR = ||v1〉 − |v2〉|2

where |v1〉 = UM . . . U1U0|Φ1〉 and |v2〉 =
∑

x

√
π(x)|x〉 ⊗ |Φ2(x)〉, then

ERR ≤ ε.

21. The device of claim 20, wherein if A is the subset of {0, 1, 2, . . .M} such that for

all j in A, Uj has only two distinct eigenvalues λ1j and λ2j such that the product

λ1jλ
∗
2j is not in the set {eiπ/3, e−iπ/3,−1}, then A has 3 or more elements.

22. The device of claim 21, wherein A has about M elements.

23. The device of claim 20, wherein for each j = 0, 1, 2, . . .M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

24. The device of claim 20, further comprising a quantum computer that operates

according to said total SEO.

25. The device of claim 20, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |x〉 ⊗ |α〉 for some state |α〉, as

an approximate eigenvector, and unitary operators that have
∑

x

√
π(x)|x〉⊗|β〉

for some state |β〉, as an approximate eigenvector.

21

ABSTRACT

We describe a method for using a classical computer to generate a sequence of ele-

mentary operation (SEO) that can be used to operate a quantum computer, thereby

inducing the quantum computer to sample an arbitrary probability distribution. The

probability distribution being sampled is specified in the form of a Bayesian network.

22

