
Method For Calculating

Mobius-like Transforms

Via a Quantum Computer

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

March 24, 2014

1



CROSS REFERENCES TO RELATED APPLICA-

TIONS

The following related patent applications are to be filed on the same day as this one:

• “Method For Calculating Symmetrized Functions Via a Quantum Computer”,

by R.R. Tucci

• “Method For Calculating Mean Values Via a Quantum Computer”, by R.R.

Tucci

• “Method For Discovering Structure of a Bayesian Network Via a Quantum

Computer”, by R.R. Tucci

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing consisting of a single file entitled ArQ-Src1-6.txt, in

ASCII format, is included with this patent application.

2



BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.Bra1 is G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude

amplification and estimation”, arXiv:quant-ph/0005055

Ref.Bra2 is G. Brassard, F. Dupuis, S. Gambs, and A. Tapp, “An optimal quantum

algorithm to approximate the mean and its application for approximating the

median of a set of points over an arbitrary distance”, arXiv:1106.4267

Ref.Dev is S. Devitt, Kae Nemoto, and W. Munro, “Quantum error correction for

beginners”, arXiv:0905.2794.

Ref.Durr is C. Dürr, P. Hoyer, “A quantum algorithm for finding the minimum”,

arXiv:quant-ph/9607014.

Ref.GPat is Lov K. Grover, “Fast Quantum Mechanical Algorithms”, US Patent

6,317,766

Ref.HeTi is Ru He, Jian Tian, “Bayesian Learning in Bayesian Networks of Mod-

erate Size by Efficient Sampling”. Unpublished.

Ref.KeSm is R. Kennes, P. Smets, “Computational aspects of the Mobius trans-

form”, arXiv:1304.1122

3



Ref.KoSo is M. Koivisto, and K. Sood, “Exact Bayesian structure discovery in

Bayesian networks”, The Journal of Machine Learning Research 5 (2004): 549-

573.

Ref.Tuc-qLis is R.R. Tucci, “qSym, qMobius, qMargi, qMean and qJennings, 5

Code Generators for Generating Quantum Circuits that Perform Some Artificial

Intelligence Related Tasks”. Unpublished. Copy included as an appendix to this

patent application.

Ref.Tuc-qMobius is R.R. Tucci, “Quantum Circuit for Calculating Mobius-like

Transforms Via Grover-like Algorithm”. Unpublished. Copy included as an

appendix to this patent application.

Ref.Tuc-qSym is R.R. Tucci, “Quantum Circuit for Calculating Symmetrized Func-

tions Via Grover-like Algorithm”. Unpublished. Copy included as an appendix

to this patent application.

Ref.TucAFGA is R.R. Tucci, “An Adaptive, Fixed-Point Version of Grover’s Al-

gorithm”, arXiv:1001.5200

Ref.TucAFGApat is R.R. Tucci, “Method for Driving Starting Quantum State to

Target One”, US Patent 8,527,437

Ref.TucQuibbs is R.R. Tucci, “Quibbs, a Code Generator for Quantum Gibbs

Sampling”, arXiv:1004.2205

Ref.TucSimAnn is R.R. Tucci, “Code Generator for Quantum Simulated Anneal-

ing”, arXiv:0908.1633

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

4



However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, matrices, instructions, steps

or gates. Furthermore, we will abbreviate the phrase “sequence of elementary oper-

ations” by “SEO”. SEOs for quantum computers are often represented by quantum

circuits. In the quantum computing literature, the term “quantum algorithm” usu-

ally means a SEO for quantum computers for performing a desired calculation. Some

quantum algorithms have become standard, such as those due to Deutsch-Jozsa, Shor

and Grover. One can find on the Internet many excellent expositions on quantum

computing.

This invention gives quantum circuits for calculating two closely related linear

transforms that we refer to jointly as Mobius-like transforms. The first is the Mobius

transform of a given function f(xn) where xn ∈ Bool. The second transform is a

trivial variation of the first: a marginal of a probability distribution P (yn), where

yn ∈ Booln.

Our algorithm utilizes the original Grover’s algorithm (see Ref.GPat ) or

any variant thereof, as long as it accomplishes the task of driving a starting state |s⟩

towards a target state |t⟩. However, we recommend to the users of our algorithm that

they use a variant of Grover’s algorithm called AFGA (adaptive fixed point Grover’s

algorithm) which was first proposed in Ref.TucAFGA and Ref.TucAFGApat .

Previously proposed algorithms for calculating the Mobius transform of a

structureless function f(xn) use only a classical computer and take O(2n) steps (see

Ref.KeSm , Ref.KoSo ). Our algorithm uses a quantum computer and it takes

O(
√
2n) steps.

Another novel feature of our invention is that our quantum circuits use Grover’s

algorithm in conjunction with two new techniques that we call “targeting two hy-

5



potheses” and “blind targeting”. When targeting two hypotheses, |t⟩ is a superposi-

tion a0|0⟩+a1|1⟩ of two orthonormal states or hypotheses |0⟩ and |1⟩. When targeting

blindly, the value of ⟨t|s⟩ is not known a priori.

The technique of “targeting two hypotheses” can be used in conjunction with

Grover’s algorithm or variants thereof to estimate (i.e., infer) the amplitude of one of

many states in a superposition. An earlier technique by Brassard et al (Ref.Bra1 ,

Ref.Bra2 ) can also be used in conjunction with Grover’s algorithm to achieve the

same goal of amplitude inference. However, our technique is very different from that

of Brassard et al. They try to produce a ket |xn⟩, where the bit string xn encodes

the amplitude that they are trying to infer. We, on the other hand, try to infer an

amplitude |a1| by measuring the ratio |a1|/|a0| and assuming we know |a0| a priori.

Another novel feature of this invention is that we show how to use our quan-

tum circuit that calculates Mobius transforms to calculate the minimum value of a

function. Previous papers (see Ref.GPat , Ref.Bra1 , Ref.Bra2 , Ref.Durr )

have proposed algorithms for finding the minimum value of a function via Grover’s

algorithm. Their methods do not use Mobius transforms, or blind targeting of two

hypotheses, so they are very different to the method proposed in this patent.

BRIEF SUMMARY OF THE INVENTION

A preferred embodiment of the invention is qMobius, a computer program written in

Java. A trivial variation of qMobius is qMargi, another computer program written in

Java. Source code for qMobius1.6 and qMargi1.6 is included as an appendix to this

patent. qMobius and qMargi are “code generators” for generating quantum circuits.

The quantum circuits generated by qMobius can be used to calculate the Mobius

transform of a given function. The quantum circuits generated by qMargi are very

similar to the circuits generated by qMobius, and they can be used to calculate a

marginal of a probability distribution.

6



BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows equations that describe technique of targeting two hypotheses.

FIG.3 shows quantum circuit used by qMobius to generate starting state |s⟩ used in

AFGA.

FIG.4 shows equations that describe properties of starting state |s⟩ generated by

the qMobius circuit of FIG.3,

FIG.5 shows Control Window of qMobius.

FIG.6 shows quantum circuit used by qMargi to generate starting state |s⟩ used in

AFGA.

FIG.7 shows equations that describe properties of starting state |s⟩ generated by

the qMargi circuit of FIG.6,

FIG.8 shows Control Window of qMargi.

DETAILED DESCRIPTION OF THE INVENTION

This section describes in detail a preferred embodiment of the invention and other pos-

sible embodiments of the invention. For a more detailed description of possible embod-

iments of this invention, seeRef.Tuc-qMobius ,Ref.Tuc-qLis ,Ref.TucAFGApat

and references therein.

A preferred embodiment of the invention is qMobius, a computer program

written in Java. A trivial variation of qMobius is qMargi, another computer program

written in Java. Source code for qMobius1.6 and qMargi1.6 is included as an appendix

to this patent. qMobius and qMargi are “code generators” for generating quantum

7



circuits. The quantum circuits generated by qMobius can be used to calculate the

Mobius transform of a given function. The quantum circuits generated by qMargi are

very similar to the circuits generated by qMobius, and they can be used to calculate

a marginal of a probability distribution.

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. qMobius1.6 and qMargi1.6

software runs inside Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box

101 represents input devices, such as a mouse or a keyboard. Box 102 comprises

the CPU, internal and external memory units. Box 102 does calculations and stores

information. Box 103 represents output devices, such as a printer or a display screen.

Box 105 represents a quantum computer, comprising an array of quantum bits and

some hardware for manipulating the state of those bits.

The remainder of this section is divided into 5 subsections. Subsection (A)

describes the quantum circuit generated by qMobius. Subsection (B) describes qMo-

bius’s user interface. Subsection (C) describes the quantum circuit generated by

qMargi. Subsection (D) describes qMargi’s user interface. Subsection (E) discusses

other possible embodiments of the invention.

(A)qMobius: Quantum Circuit

In this section, we describe the quantum circuit generated by qMobius. For a more

detailed description of the circuit, see Ref.Tuc-qMobius .

The full algorithm utilizes the original Grover’s algorithm or any variant

thereof, as long as the algorithm drives a starting state |s⟩ to a target state |t⟩. For

concreteness, we will assume for the preferred embodiment of this invention that we

are using a variant of Grover’s algorithm called AFGA, described in Ref.TucAFGA

and Ref.TucAFGApat .

Consider FIG.2.

FIG.2 describes what we will call “targeting two hypotheses”. Targeting two

8



hypotheses is a trick that can sometimes be used when applying Grover’s original

algorithm or some variant thereof. Sometimes it is possible to arrange things so that

the target state is a superposition a0 |0⟩+a1 |1⟩ of two orthonormal states |0⟩ and |1⟩,

so that if we know a0, we can infer a1, a type of hypothesis testing with 2 hypotheses.

If the target state were just proportional to say |0⟩, then its component along |0⟩

would be 1 after normalization so one wouldn’t be able to do any type of amplitude

inference.

Suppose z0, z1 are complex numbers and |χ⟩ is an unnormalized state that

satisfy 201. Define p and q by 202.

Let µ, ν and ω label subsystems. Assume the states |ψ0⟩µ and |ψ1⟩µ are

orthonormal, the states |0⟩ν and |1⟩ν are orthonormal, and the states |0⟩ω and |1⟩ω
are orthonormal.

We want to use AFGA with a starting state given by 203 and a target state

given by 204.

It’s easy to check that 205 and 206 are true. |t⟩ only appears in AFGA within

the projection operator |t⟩ ⟨t|, and this projection operator always acts solely on the

space spanned by |t⟩ and |s⟩. But |t⟩ ⟨t| and |0⟩ ⟨0|ω act identically on that space.

Hence, for the purposes of AFGA, we can replace |t⟩ ⟨t| by |0⟩ ⟨0|ω. We will call |0⟩ω
the “sufficient” target state to distinguish it from the full target state |t⟩µ,ν,ω.

Recall that AFGA converges in order 1/| ⟨t|s⟩ | steps. From the definitions of

|s⟩ and |t⟩, one finds 207.

Once system (µ, ν, ω) has been driven to the target state |t⟩µ,ν,ω, one can

measure the subsystem ν while ignoring the subsystem (µ, ω). If we do so, the outcome

of the measurements of ν can be predicted from the partial density matrix 208. From

this density matrix, one gets 209 and 210.

At first sight, it seems that Grover-like algorithms and AFGA in particular re-

quire knowledge of | ⟨t|s⟩ |. Next, we will describe a technique called “blind targeting”

for bypassing that onerous requirement.

9



For concreteness, we will assume in our discussion below that we are using

AFGA and that we are targeting two hypotheses, but the idea of this technique could

be carried over to other Grover-like algorithms in a fairly obvious way.

According to 207, when targeting two hypotheses, | ⟨t|s⟩ | = √
p. Suppose we

guess-timate p, and use that estimate and the AFGA formulas of Ref.TucAFGA

to calculate the various rotation angles αj for j = 0, 1, . . . , NGro − 1, where NGro is

the number of Grover steps. Suppose NGro is large enough. Then, in the unlikely

event that our estimate of p is perfect, as j → NGro − 1, ŝj will converge to t̂. On

the other hand, if our estimate of p is not perfect but not too bad either, we expect

that as j → NGro − 1, the point ŝj will reach a steady state in which, as j increases,

ŝj rotates in a small circle in the neighborhood of t̂. After steady state is reached, all

functions of ŝj will vary periodically with j.

Suppose we do AFGA with p fixed and with NGro = (NGro)0 + r Grover steps

where r = 0, 1, . . . Ntail − 1. Call each r a “tail run”, so p is the same for all Ntail tail

runs, but NGro varies for different tail runs. Suppose that steady state has already

been reached after (NGro)0 steps. For any quantity Qr where r = 0, 1, . . . Ntail−1, let

⟨Q⟩LP denote the outcome of passing the Ntail values of Qr through a low pass filter

that takes out the AC components and leaves only the DC part. For example, ⟨Q⟩LP
might equal

∑
rQr/Ntail or [maxrQr +minrQr]/2. By applying the SEO of tail run

r to a quantum computer several times, each time ending with a measurement of the

quantum computer, we can obtain values Pr(0) and Pr(1) of P (0) and P (1) for tail

run r. Then we can find
⟨√

P (1)/P (0)
⟩
LP

= ⟨|z1|/|z0|⟩LP . But we also expect to

know |z0|, so we can use ⟨|z1|/|z0|⟩LP |z0| as an estimate of |z1|. This estimate of |z1|

and the known value of |z0| yield a new estimate of p = |z1|2+ |z0|2, one that is much

better than the first estimate we used. We can repeat the previous steps using this

new estimate of p. Every time we repeat this process, we get a new estimate of p that

is better than our previous estimate. Call a “trial” each time we repeat the process

of Ntail tail runs. p is fixed during a trial, but p varies from trial to trial.

10



Let θ(S) equal 1 if statement S is true and 0 if it’s false.

The goal of qMobius is to give a method whereby a user can calculate

f(xn) =
∑
x−n

θ(x−n ≤ xn)f−(x−n),

with xn, x−n ∈ Booln, f−(x−n) = |A−(x−n)|2, and A−(x−n) = ⟨x−n|ψ−⟩. Using

linearity, the type of functions f−(x−n) for which one can find, via our method,

the Mobius transform, can be extended to functions which don’t necessarily satisfy∑
x−n f−(x−n) = 1.

We will assume that we know how to compile |ψ−⟩αn (i.e., that we can con-

struct it starting from |0n⟩αn using a sequence of elementary operations. Elementary

operations are operations that act on a few (usually 1,2 or 3) qubits at a time, such as

qubit rotations and CNOTS.) Multiplexor techniques for doing such compilations are

discussed in Ref.TucSimAnn . If n is very large, our algorithm will be useless unless

such a compilation is of polynomial efficiency, meaning that its number of elementary

operations grows as poly(n).

Next consider FIG.3.

Our preferred method for calculating the Mobius transform of f−(x−n) con-

sists of applying AFGA using the techniques of targeting two hypotheses and blind

targeting. When we apply AFGA, we will use a sufficient target |0⟩ω. All that re-

mains for us to do to fully specify our circuit for calculating the Mobius transform

of f−(x−n) is to give a circuit for generating |s⟩. That is what FIG.3 does. FIG.3

assumes n = 3 for concreteness. That figure uses fairly standard quantum circuit no-

tation. The H stands for Hadamard matrix, σX for the X Pauli matrix, Pc = |c⟩ ⟨c|

for c ∈ Bool, etc. More detailed explanations of the symbols in FIG.3 can be found in

Ref.Tuc-qMobius and references therein. Note that every horizontal line of FIG.3

is a qubit.

Let α− include all alpha minus qubits in FIG.3. Let α include all alpha

(without the minus superscript) qubits in FIG.3. Let β include all beta qubits in

FIG.3.

11



Next consider FIG.4.

Assuming that the circuit of FIG.3 is correct, then that circuit will generate

the state |s⟩ given by 401, where |χ⟩ is an unnormalized state and where 402 through

405 are satisfied. (If there is some small mistake in the circuit of FIG.3, then we

should be able to find that mistake in the future and make small amendments to

FIG.3 with the goal of generating an |s⟩ that satisfies 401).

(B)qMobius: User Interface

In this section, we describe qMobius’s user interface. For a more detailed description

of the interface, see Ref.Tuc-qLis .

(B1)Input Parameters

qMobius expects the following inputs:

n: The number of qubits. xn, x−n ∈ Booln.

the vector cn: We desire to calculate f(cn), the Mobius transform f(xn) of f−(x−n)

at xn = cn ∈ Booln.

a circuit that generates state |ψ−⟩: The state |ψ−⟩α−n acts on n qubits. The

demonstration version of qMobius uses a trivial, inconsequential circuit for |ψ−⟩,

but this can be changed easily by subclassing the class of qMobius that defines

|ψ−⟩.

an estimate of p = | ⟨t|s⟩ |2

(B2)Output Files

qMobius outputs 3 types of files: a Log File, an English File and a Picture File.

A Log File records all the input and output parameters displayed in the Con-

trol Window (see section entitled “Control Window”), so the user won’t forget

them.

12



An English File gives an “in English” description of a quantum circuit. It com-

pletely specifies the output SEO. Each line in it represents one elementary operation,

and time increases as we move downwards in the file.

A Picture File partially specifies the output SEO. It gives an ASCII picture of

the quantum circuit. Each line in it represents one elementary operation, and time

increases as we move downwards in the file. There is a one-to-one onto correspondence

between the rows of corresponding English and Picture Files.

English and Picture Files are used in many of my previous computer programs.

I’ve explained those files in detail in previous papers so I won’t do so again here. See,

for example, Ref.TucQuibbs for a detailed description of the content of those files

and how to interpret that content.

(B3)Control Window

FIG.5 shows the Control Window for qMobius. This is the main and only window

of qMobius (except for the occasional error or advice message window). This window

is open if and only if qMobius is running.

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the

Write Files button. For example, if the user inserts test in this text field, the

following 3 files will be written:

• test qMob log.txt This is a Log File.

• test qMob eng.txt This is an English File

• test qMob pic.txt This is a Picture File.

Number of |psi > Qubits: This equals n.

c vector radio buttons: These radio buttons allow the user to specify the vector

cn = (cj) ∈ Booln. The j index of the radio buttons grows downward and is

13



indicated by bit 0, bit 1, bit 2, bit 3. For demonstration purposes, this Java

applet only allows a maximum number of 4 |ψ⟩ qubits. However, the applet is

based on a class called MobMain which does not have these limitations.

The number of rows of radio buttons that are visible equals the number chosen

in the Number of |psi > Qubits menu.

Estimate of |z 1|∧2/|z 0|∧2: This equals the user’s initial estimate of |z1|2/|z0|2.

Maximum Number of Grover Steps: qMobius will stop iterating the AFGA if

it reaches this number of iterations.

Gamma Tolerance (degs): This is an angle given in degrees. qMobius will stop

iterating the AFGA if the absolute value of γj becomes smaller than this toler-

ance. (γj is an angle in AFGA that tends to zero as the iteration index j tends

to infinity. γj quantifies how close the AFGA is to reaching the target state).

Delta Lambda (degs): This is the angle ∆λ of AFGA, given in degrees.

The Control Window displays the following output text boxes.

|z 0|∧2: This equals |z0|2, the probability of the “null” hypothesis of the two hy-

potheses being targeted.

Starting Gamma (degs): This is γ0, the first γj, the γj for the first Grover itera-

tion, given in degrees.

Final Gamma (degs): This is the γj for the final Grover iteration, given in degrees.

Number of Grover Steps: This is NGro, the total number of Grover iterations that

were performed. It must be smaller or equal to the Maximum Number

of Grover Steps. It will be smaller if the Final Gamma (degs) reached

the Gamma Tolerance (degs) before the Maximum Number of Grover

Steps was reached.

14



Number of Qubits: This is the total number of qubits for the output quantum

circuit.

Number of Elementary Operations: This is the number of elementary opera-

tions in the output quantum circuit. Since there are no LOOPs in qMobius

v1.6, this is the number of lines in the English File, which equals the number

of lines in the Picture File.

(C)qMargi: Quantum Circuit

In this section, we describe the quantum circuit generated by qMargi. For a more

detailed description of the circuit, see Ref.Tuc-qMobius . As we shall see, the

quantum circuit generated by qMargi is a trivial variation of the one generated by

qMobius.

FIG.1 and FIG.2, and everything we’ve said about them, applies to qMargi

just like it does to qMobius.

The goal of qMargi is to give a method whereby a user can calculate

P (xn0) =
∑
x−n

θ(xn0 = x−n0)P (x−n),

where n > n0 > 0, x−n = (x−(n−n0), x−n0) ∈ Booln, P−(x−n) = |A−(x−n)|2, and

A−(x−n) = ⟨x−n|ψ−⟩.

As with qMobius, we will assume for qMargi that we know how to compile

|ψ−⟩αn .

Next consider FIG.6.

Our preferred method for calculating the marginal probability distribution

P (x−n0) consists of applying AFGA using the techniques of targeting two hypotheses

and blind targeting. When we apply AFGA, we will use a sufficient target |0⟩ω. All

that remains for us to do to fully specify our circuit for calculating the marginal

P (x−n0) is to give a circuit for generating |s⟩. That is what FIG.6 does. FIG.6

15



assumes n0 = 3 for concreteness. Note that every horizontal line of FIG.6 is a qubit

except for the thick line labelled α−(n−3) which represents n− 3 qubits.

Let α− include all alpha minus qubits in FIG.6. Let α include all alpha

(without the minus superscript) qubits in FIG.6. Let β include all beta qubits in

FIG.6. Note that in the qMobius case, the number of α−, α, β qubits were all the

same, whereas in this case, there are n α− qubits but only 3 α and β ones.

Note that FIG.3 for qMobius and FIG.6 for qMargi are very similar.

Next consider FIG.7.

Assuming that the circuit of FIG.6 is correct, then that circuit will generate

the state |s⟩ given by 701, where |χ⟩ is an unnormalized state and where 702 through

705 are satisfied. (If there is some small mistake in the circuit of FIG.6, then we

should be able to find that mistake in the future and make small amendments to

FIG.6 with the goal of generating an |s⟩ that satisfies 701).

(D)qMargi: User Interface

In this section, we describe qMargi’s user interface. For a more detailed description

of the interface, see Ref.Tuc-qLis .

(D1)Input Parameters

qMargi expects the following inputs:

n: The number of |ψ−⟩ qubits. x−n ∈ Booln.

n0: The number of qubits in the marginalized probability distribution. Must have

n > n0 > 0.

the vector cn0: We desire to calculate
∑

x−(n−n0) P (x
−n) evaluated at x−n0 = cn0 ∈

Booln0 .

a circuit that generates state |ψ−⟩: The state |ψ−⟩α−n acts on n qubits. The

demonstration version of qMargi uses a trivial, inconsequential circuit for |ψ−⟩,

16



but this can be changed easily by subclassing the class of qMargi that defines

|ψ−⟩.

an estimate of p = | ⟨t|s⟩ |2

(D2)Output Files

Everything we said about qMobius output files applies almost verbatim to qMargi

output files.

(D3)Control Window

FIG.8 shows the Control Window for qMargi. Everything we said about the qMo-

bius Control Window applies almost verbatim to the qMargi Control Window.

The main difference is that for the qMargi window, there is an extra input called

Number of marginal qubits. In terms of the notation of section (D1), Number

of |psi > qubits equals n and Number of marginal qubits equals n0.

(E)Other Embodiments

In this section, we describe other possible embodiments of the invention.

A standard definition in the field of quantum computation is that a qu(d)it

is a quantum state that belongs to a d dimensional vector space and a qubit is a

qu(d)it with d = 2. In quantum error correction (see Ref.Dev for an introduction),

one distinguishes between 2 types of qu(d)its, physical and logical. A logical qu(d)it

consists of a number of physical qu(d)its. It goes without saying that the qu(d)its in

the quantum circuit FIG.3 or FIG.6 (or variant thereof) can always be interpreted

as logical qu(d)its, and additional gates can be added to FIG.3 or FIG.6 (or variant

thereof) with the purpose of performing error correction.

Our method for calculating the Mobius transform of a function can be used

for calculating the minimum value of a function as follows. Suppose xn ∈ Booln, and

17



E(xn) > 0 is the function we wish to minimize. Define a secondary function D−()

which is sharply peaked at the minimum of the function E(). If E(xn) is minimum

when xn = Xn, then assume D−(xn) is almost equal to the Kronecker delta function

δ(xn, Xn). Let D() denote the Mobius transform of D−(). Let’s speak in terms

of the decimal representation x = dec(xn) of the points xn ∈ Booln. Call X the

minimum of E(x). Assume n = 5 for concreteness. The domain of the function D−

is {0, 1, . . . , 31}. Calculate D(X0) with X0 = 15. If D(15) is much smaller than 1,

then that means that the peak X is in {16, 17, . . . , 31} so set X1 = 23, the midpoint

of {16, 17, . . . , 31}. Otherwise, if D(15) is close to 1, then that means that the peak

X is in {0, 1, . . . , 15} so set X1 = 7, the midpoint of {0, 1, . . . , 15}. Repeating this

procedure, one gets a finite sequence X0, X1, X2, . . . that converges to the peak X. We

are simply performing a binary search for X. Of course, for large n, this technique for

finding minima is only useful if
∣∣ψ−

D

⟩
(where

√
D−(xn) =

⟨
xn|ψ−

D

⟩
) can be compiled

into a SEO of poly(n) length.

Many papers (see, for example, Ref.HeTi and references therein) have pro-

posed methods for discovering from data the graph (aka structure) of a classical

Bayesian network. Ref.HeTi explains how some of those methods require that we

perform sums
∑

paj⊂Mom over all paj such that paj ⊂ Mom, where paj is the set of

nodes which are parents to node j in a classical Bayesian network with n nodes, and

where Mom is a “mother” set of nodes. As is well known (see Ref.Tuc-qMobius

for an explanation if it’s not obvious to the reader), the statement x−n ≤ xn and

the statement paj ⊂ Mom can be identified. Hence, sums over all paj such that

paj ⊂ Mom are examples of Mobius transforms which can be calculated using this

invention.

For convenience, the quantum circuits generated by an embodiment of this

invention may include gates that act on more than 3 qubits at a time. Such “fat” gates

might be judged by some not to be elementary gates as defined earlier in this patent.

However, such fat gates should be allowed inside the SEO’s covered by this invention

18



for cases in which they are trivially expandable (TE) fat gates. By TE fat gates

we mean, fat gates for which there are well known, expanding methods for replacing

them by a sequence of gates that are strictly elementary, in the sense that they act

on just one or two qubits at a time. Multi-controlled rotations and multiplexors

are examples of TE fat gates. In fact, see the Java classes MultiCRotExpander and

MultiplexorExpander and related classes included in the code listing appendix to

this patent. These classes automate such expanding methods for multi-controlled

rotations and multiplexors.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

19


