
Method For Calculating

Mean Values

Via a Quantum Computer

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

March 24, 2014

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

The following related patent applications are to be filed on the same day as this one:

• “Method For Calculating Symmetrized Functions Via a Quantum Computer”,

by R.R. Tucci

• “Method For Calculating Mobius-like Transforms Via a Quantum Computer”,

by R.R. Tucci

• “Method For Discovering Structure of a Bayesian Network Via a Quantum

Computer”, by R.R. Tucci

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing consisting of a single file entitled ArQ-Src1-6.txt, in

ASCII format, is included with this patent application.

2

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.Bra1 is G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude

amplification and estimation”, arXiv:quant-ph/0005055

Ref.Bra2 is G. Brassard, F. Dupuis, S. Gambs, and A. Tapp, “An optimal quantum

algorithm to approximate the mean and its application for approximating the

median of a set of points over an arbitrary distance”, arXiv:1106.4267

Ref.Dev is S. Devitt, Kae Nemoto, and W. Munro, “Quantum error correction for

beginners”, arXiv:0905.2794.

Ref.GPat is Lov K. Grover, “Fast Quantum Mechanical Algorithms”, US Patent

6,317,766

Ref.Tuc-qLis is R.R. Tucci, “qSym, qMobius, qMargi, qMean and qJennings, 5

Code Generators for Generating Quantum Circuits that Perform Some Artificial

Intelligence Related Tasks”. Unpublished. Copy included as an appendix to this

patent application.

Ref.Tuc-qMean is R.R. Tucci, “Quantum Circuit for Calculating Mean Values Via

Grover-like Algorithm”. Unpublished. Copy included as an appendix to this

patent application.

3

Ref.Tuc-qSym is R.R. Tucci, “Quantum Circuit for Calculating Symmetrized Func-

tions Via Grover-like Algorithm”. Unpublished. Copy included as an appendix

to this patent application.

Ref.TucAFGA is R.R. Tucci, “An Adaptive, Fixed-Point Version of Grover’s Al-

gorithm”, arXiv:1001.5200

Ref.TucAFGApat is R.R. Tucci, “Method for Driving Starting Quantum State to

Target One”, US Patent 8,527,437

Ref.TucQuibbs is R.R. Tucci, “Quibbs, a Code Generator for Quantum Gibbs

Sampling”, arXiv:1004.2205

Ref.TucSimAnn is R.R. Tucci, “Code Generator for Quantum Simulated Anneal-

ing”, arXiv:0908.1633

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, matrices, instructions, steps

or gates. Furthermore, we will abbreviate the phrase “sequence of elementary oper-

ations” by “SEO”. SEOs for quantum computers are often represented by quantum

circuits. In the quantum computing literature, the term “quantum algorithm” usu-

ally means a SEO for quantum computers for performing a desired calculation. Some

quantum algorithms have become standard, such as those due to Deutsch-Jozsa, Shor

and Grover. One can find on the Internet many excellent expositions on quantum

computing.

4

This invention gives a quantum circuit for calculating the mean value of a

function A(xn) where xn ∈ Booln.

Our algorithm utilizes the original Grover’s algorithm (see Ref.GPat) or

any variant thereof, as long as it accomplishes the task of driving a starting state |s⟩

towards a target state |t⟩. However, we recommend to the users of our algorithm that

they use a variant of Grover’s algorithm called AFGA (adaptive fixed point Grover’s

algorithm) which was first proposed in Ref.TucAFGA and Ref.TucAFGApat .

Algorithms for calculating the mean value of a function A(xn) using only a

classical computer take O(2n) steps. Our algorithm uses a quantum computer and it

takes O(
√
2n) steps.

Previous papers (seeRef.GPat , Ref.Bra1 , Ref.Bra2) have proposed algo-

rithms for finding the mean value of a function via Grover’s algorithm. Our algorithm

differs significantly from those. Our quantum circuit uses Grover’s algorithm in con-

junction with two new techniques that we call “targeting two hypotheses” and “blind

targeting”. When targeting two hypotheses, |t⟩ is a superposition a0|0⟩+a1|1⟩ of two

orthonormal states or hypotheses |0⟩ and |1⟩. When targeting blindly, the value of

⟨t|s⟩ is not known a priori.

The technique of “targeting two hypotheses” can be used in conjunction with

Grover’s algorithm or variants thereof to estimate (i.e., infer) the amplitude of one of

many states in a superposition. An earlier technique by Brassard et al (Ref.Bra1 ,

Ref.Bra2) can also be used in conjunction with Grover’s algorithm to achieve the

same goal of amplitude inference. However, our technique is very different from that

of Brassard et al. They try to produce a ket |xn⟩, where the bit string xn encodes

the amplitude that they are trying to infer. We, on the other hand, try to infer an

amplitude |a1| by measuring the ratio |a1|/|a0| and assuming we know |a0| a priori.

5

BRIEF SUMMARY OF THE INVENTION

A preferred embodiment of the invention is qMean, a computer program written in

Java. Source code for qMean1.6 is included as an appendix to this patent. qMean is

a “code generator” for generating quantum circuits. The quantum circuits generated

by qMean can be used to calculate the mean value of a given function.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows equations that describe technique of targeting two hypotheses.

FIG.3 shows quantum circuit used to generate starting state |s⟩ used in AFGA.

FIG.4 shows equations that describe properties of starting state |s⟩ generated by

the circuit of FIG.3,

FIG.5 shows Control Window of qMean.

DETAILED DESCRIPTION OF THE INVENTION

This section describes in detail a preferred embodiment of the invention and other pos-

sible embodiments of the invention. For a more detailed description of possible embod-

iments of this invention, see Ref.Tuc-qMean , Ref.Tuc-qLis , Ref.TucAFGApat

and references therein.

A preferred embodiment of the invention is qMean, a computer program writ-

ten in Java. Source code for qMean1.6 is included as an appendix to this patent.

qMean is a “code generator” for generating quantum circuits. The quantum circuits

generated by qMean can be used to calculate the mean value of a given function.

6

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. qMean1.6 software runs inside

Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box 101 represents input

devices, such as a mouse or a keyboard. Box 102 comprises the CPU, internal and

external memory units. Box 102 does calculations and stores information. Box 103

represents output devices, such as a printer or a display screen. Box 105 represents

a quantum computer, comprising an array of quantum bits and some hardware for

manipulating the state of those bits.

The remainder of this section is divided into 3 subsections. Subsection (A)

describes the quantum circuit generated by qMean. Subsection (B) describes qMean’s

user interface. Subsection (C) discusses other possible embodiments of the invention.

(A)qMean: Quantum Circuit

In this section, we describe the quantum circuit generated by qMean. For a more

detailed description of the circuit, see Ref.Tuc-qMean .

The full algorithm utilizes the original Grover’s algorithm or any variant

thereof, as long as the algorithm drives a starting state |s⟩ to a target state |t⟩. For

concreteness, we will assume for the preferred embodiment of this invention that we

are using a variant of Grover’s algorithm called AFGA, described in Ref.TucAFGA

and Ref.TucAFGApat .

Consider FIG.2.

FIG.2 describes what we will call “targeting two hypotheses”. Targeting two

hypotheses is a trick that can sometimes be used when applying Grover’s original

algorithm or some variant thereof. Sometimes it is possible to arrange things so that

the target state is a superposition a0 |0⟩+a1 |1⟩ of two orthonormal states |0⟩ and |1⟩,

so that if we know a0, we can infer a1, a type of hypothesis testing with 2 hypotheses.

If the target state were just proportional to say |0⟩, then its component along |0⟩

would be 1 after normalization so one wouldn’t be able to do any type of amplitude

7

inference.

Suppose z0, z1 are complex numbers and |χ⟩ is an unnormalized state that

satisfy 201. Define p and q by 202.

Let µ, ν and ω label subsystems. Assume the states |ψ0⟩µ and |ψ1⟩µ are

orthonormal, the states |0⟩ν and |1⟩ν are orthonormal, and the states |0⟩ω and |1⟩ω
are orthonormal.

We want to use AFGA with a starting state given by 203 and a target state

given by 204.

It’s easy to check that 205 and 206 are true. |t⟩ only appears in AFGA within

the projection operator |t⟩ ⟨t|, and this projection operator always acts solely on the

space spanned by |t⟩ and |s⟩. But |t⟩ ⟨t| and |0⟩ ⟨0|ω act identically on that space.

Hence, for the purposes of AFGA, we can replace |t⟩ ⟨t| by |0⟩ ⟨0|ω. We will call |0⟩ω
the “sufficient” target state to distinguish it from the full target state |t⟩µ,ν,ω.

Recall that AFGA converges in order 1/| ⟨t|s⟩ | steps. From the definitions of

|s⟩ and |t⟩, one finds 207.

Once system (µ, ν, ω) has been driven to the target state |t⟩µ,ν,ω, one can

measure the subsystem ν while ignoring the subsystem (µ, ω). If we do so, the outcome

of the measurements of ν can be predicted from the partial density matrix 208. From

this density matrix, one gets 209 and 210.

At first sight, it seems that Grover-like algorithms and AFGA in particular re-

quire knowledge of | ⟨t|s⟩ |. Next, we will describe a technique called “blind targeting”

for bypassing that onerous requirement.

For concreteness, we will assume in our discussion below that we are using

AFGA and that we are targeting two hypotheses, but the idea of this technique could

be carried over to other Grover-like algorithms in a fairly obvious way.

According to 207, when targeting two hypotheses, | ⟨t|s⟩ | = √
p. Suppose we

guess-timate p, and use that estimate and the AFGA formulas of Ref.TucAFGA

to calculate the various rotation angles αj for j = 0, 1, . . . , NGro − 1, where NGro is

8

the number of Grover steps. Suppose NGro is large enough. Then, in the unlikely

event that our estimate of p is perfect, as j → NGro − 1, ŝj will converge to t̂. On

the other hand, if our estimate of p is not perfect but not too bad either, we expect

that as j → NGro − 1, the point ŝj will reach a steady state in which, as j increases,

ŝj rotates in a small circle in the neighborhood of t̂. After steady state is reached, all

functions of ŝj will vary periodically with j.

Suppose we do AFGA with p fixed and with NGro = (NGro)0 + r Grover steps

where r = 0, 1, . . . Ntail − 1. Call each r a “tail run”, so p is the same for all Ntail tail

runs, but NGro varies for different tail runs. Suppose that steady state has already

been reached after (NGro)0 steps. For any quantity Qr where r = 0, 1, . . . Ntail−1, let

⟨Q⟩LP denote the outcome of passing the Ntail values of Qr through a low pass filter

that takes out the AC components and leaves only the DC part. For example, ⟨Q⟩LP
might equal

∑
rQr/Ntail or [maxrQr +minrQr]/2. By applying the SEO of tail run

r to a quantum computer several times, each time ending with a measurement of the

quantum computer, we can obtain values Pr(0) and Pr(1) of P (0) and P (1) for tail

run r. Then we can find
⟨√

P (1)/P (0)
⟩
LP

= ⟨|z1|/|z0|⟩LP . But we also expect to

know |z0|, so we can use ⟨|z1|/|z0|⟩LP |z0| as an estimate of |z1|. This estimate of |z1|

and the known value of |z0| yield a new estimate of p = |z1|2+ |z0|2, one that is much

better than the first estimate we used. We can repeat the previous steps using this

new estimate of p. Every time we repeat this process, we get a new estimate of p that

is better than our previous estimate. Call a “trial” each time we repeat the process

of Ntail tail runs. p is fixed during a trial, but p varies from trial to trial.

The goal of the invention is to give a method whereby a user can calculate the

mean value

A =
1

2n

∑
xn

A(xn),

with xn ∈ Booln and A(xn) = ⟨xn|ψ⟩. Using linearity, the type of functions A(xn) for

which one can find, via our method, the mean value, can be extended to functions

which don’t necessarily satisfy
∑

xn |A(xn)|2 = 1.

9

We will assume that we know how to compile |ψ⟩αn (i.e., that we can construct

it starting from |0n⟩αn using a sequence of elementary operations. Elementary oper-

ations are operations that act on a few (usually 1,2 or 3) qubits at a time, such as

qubit rotations and CNOTS.) Multiplexor techniques for doing such compilations are

discussed in Ref.TucSimAnn . If n is very large, our algorithm will be useless unless

such a compilation is of polynomial efficiency, meaning that its number of elementary

operations grows as poly(n).

Next consider FIG.3.

Our preferred method for calculating the mean value of A(xn) consists of

applying AFGA using the techniques of targeting two hypotheses and blind targeting.

When we apply AFGA, we will use a sufficient target |0⟩ω. All that remains for us

to do to fully specify our circuit for calculating the mean value of A(xn) is to give

a circuit for generating |s⟩. That is what FIG.3 does. FIG.3 assumes n = 3 for

concreteness. That figure uses fairly standard quantum circuit notation. The H

stands for Hadamard matrix, σX for the X Pauli matrix, Pc = |c⟩ ⟨c| for c ∈ Bool,

etc. More detailed explanations of the symbols in FIG.3 can be found in Ref.Tuc-

qMean and references therein. Note that every horizontal line of FIG.3 is a qubit.

Let α include all alpha qubits in FIG.3. Let β include all beta qubits in FIG.3.

Next consider FIG.4.

Assuming that the circuit of FIG.3 is correct, then that circuit will generate

the state |s⟩ given by 401, where |χ⟩ is an unnormalized state and where 402 through

405 are satisfied. (If there is some small mistake in the circuit of FIG.3, then we

should be able to find that mistake in the future and make small amendments to

FIG.3 with the goal of generating an |s⟩ that satisfies 401).

Of course, the circuit for generating |s⟩ can be changed easily so that z0 is

proportional to A(yn) instead of A(0n), where yn is any element of Booln.

10

(B)qMean: User Interface

In this section, we describe qMean’s user interface. For a more detailed description

of the interface, see Ref.Tuc-qLis .

(B1)Input Parameters

qMean expects the following inputs:

n: The number of |ψ⟩ qubits. xn ∈ Booln.

a circuit that generates state |ψ⟩: The state |ψ⟩αn acts on n qubits. The demon-

stration version of qMean uses a trivial, inconsequential circuit for |ψ⟩, but this

can be changed easily by subclassing the class of qMean that defines |ψ⟩.

an estimate of p = | ⟨t|s⟩ |2

(B2)Output Files

qMean outputs 3 types of files: a Log File, an English File and a Picture File.

A Log File records all the input and output parameters displayed in the Con-

trol Window (see section entitled “Control Window”), so the user won’t forget

them.

An English File gives an “in English” description of a quantum circuit. It com-

pletely specifies the output SEO. Each line in it represents one elementary operation,

and time increases as we move downwards in the file.

A Picture File partially specifies the output SEO. It gives an ASCII picture of

the quantum circuit. Each line in it represents one elementary operation, and time

increases as we move downwards in the file. There is a one-to-one onto correspondence

between the rows of corresponding English and Picture Files.

English and Picture Files are used in many of my previous computer programs.

I’ve explained those files in detail in previous papers so I won’t do so again here. See,

11

for example, Ref.TucQuibbs for a detailed description of the content of those files

and how to interpret that content.

(B3)Control Window

FIG.5 shows the Control Window for qMean. This is the main and only window

of qMean (except for the occasional error or advice message window). This window

is open if and only if qMean is running.

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the

Write Files button. For example, if the user inserts test in this text field, the

following 3 files will be written:

• test qMean log.txt This is a Log File.

• test qMean eng.txt This is an English File

• test qMean pic.txt This is a Picture File.

Number of |psi > Qubits: This equals n. For demonstration purposes, this Java

applet only allows a maximum number of 4 |ψ⟩ qubits. However, the applet is

based on a class called MeanMain which does not have these limitations.

Estimate of |z 1|∧2/|z 0|∧2: This equals the user’s initial estimate of |z1|2/|z0|2.

Maximum Number of Grover Steps: qMean will stop iterating the AFGA if it

reaches this number of iterations.

Gamma Tolerance (degs): This is an angle given in degrees. qMean will stop iter-

ating the AFGA if the absolute value of γj becomes smaller than this tolerance.

(γj is an angle in AFGA that tends to zero as the iteration index j tends to

infinity. γj quantifies how close the AFGA is to reaching the target state).

Delta Lambda (degs): This is the angle ∆λ of AFGA, given in degrees.

12

The Control Window displays the following output text boxes.

|z 0|∧2: This equals |z0|2, the probability of the “null” hypothesis of the two hy-

potheses being targeted.

Starting Gamma (degs): This is γ0, the first γj, the γj for the first Grover itera-

tion, given in degrees.

Final Gamma (degs): This is the γj for the final Grover iteration, given in degrees.

Number of Grover Steps: This is NGro, the total number of Grover iterations that

were performed. It must be smaller or equal to the Maximum Number

of Grover Steps. It will be smaller if the Final Gamma (degs) reached

the Gamma Tolerance (degs) before the Maximum Number of Grover

Steps was reached.

Number of Qubits: This is the total number of qubits for the output quantum

circuit.

Number of Elementary Operations: This is the number of elementary opera-

tions in the output quantum circuit. Since there are no LOOPs in qMean v1.6,

this is the number of lines in the English File, which equals the number of lines

in the Picture File.

(C)Other Embodiments

In this section, we describe other possible embodiments of the invention.

A standard definition in the field of quantum computation is that a qu(d)it

is a quantum state that belongs to a d dimensional vector space and a qubit is a

qu(d)it with d = 2. In quantum error correction (see Ref.Dev for an introduction),

one distinguishes between 2 types of qu(d)its, physical and logical. A logical qu(d)it

consists of a number of physical qu(d)its. It goes without saying that the qu(d)its in

13

the quantum circuit FIG.3 (or variant thereof) can always be interpreted as logical

qu(d)its, and additional gates can be added to FIG.3 (or variant thereof) with the

purpose of performing error correction.

For convenience, the quantum circuits generated by an embodiment of this

invention may include gates that act on more than 3 qubits at a time. Such “fat” gates

might be judged by some not to be elementary gates as defined earlier in this patent.

However, such fat gates should be allowed inside the SEO’s covered by this invention

for cases in which they are trivially expandable (TE) fat gates. By TE fat gates

we mean, fat gates for which there are well known, expanding methods for replacing

them by a sequence of gates that are strictly elementary, in the sense that they act

on just one or two qubits at a time. Multi-controlled rotations and multiplexors

are examples of TE fat gates. In fact, see the Java classes MultiCRotExpander and

MultiplexorExpander and related classes included in the code listing appendix to

this patent application. These classes automate such expanding methods for multi-

controlled rotations and multiplexors.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

14

