
qSym, qMobius, qMargi, qMean and qJennings,
5 Code Generators

for Generating Quantum Circuits
that Perform Some

Artificial Intelligence Related Tasks

Robert R. Tucci
P.O. Box 226

Bedford, MA 01730
tucci@ar-tiste.com

April 2, 2014

Abstract

This paper introduces v1.6 of qSym, qMobius, qMargi, qMean and qJennings, which
are 5 Java applications available for free. (Source code included in the distribution.)
The algorithms implemented by these 5 applications have been discussed in previous
papers. The purpose of qSym is to calculate the symmetrized version of a given
function. The purpose of qMobius is to calculate the Mobius Transform of a given
function. The purpose of qMargi is to calculate the marginal probability distributions
of a given probability distribution. The purpose of qMean is to calculate the mean
value of a given function. The purpose of qJennings is to discover from data the
structure of a classical Bayesian network.

1

1 Introduction

We say a unitary operator acting an array of qubits has been compiled if it has
been expressed as a Sequence of Elementary Operations (SEO), where by elementary
operations we mean operations that act on a few (usually 1,2 or 3) qubits at a time,
such as qubit rotations and CNOTS. SEO’s are often represented as quantum circuits.

This paper introduces1 v1.6 of qSym, qMobius, qMargi, qMean and qJennings,
which are 5 Java applications available for free. (Source code included in the distri-
bution.) Henceforth in this paper, we will refer to these 5 applications collectively as
the qApps. The qApps are “code generators” for generating quantum circuits.

qSym implements an algorithm discussed in Ref. [7]. Its purpose is to calculate
the symmetrized version of a given function.

qMobius implements an algorithm discussed in Ref. [8]. Its purpose is to
calculate the Mobius Transform of a given function.

qMargi implements an algorithm discussed in Ref. [8]. Its purpose is to
calculate the marginal probability distributions of a given probability distribution.

qMean implements an algorithm discussed in Ref. [9]. Its purpose is to calcu-
late the mean value of a given function.

qJennings implements an algorithm discussed in Ref. [10]. Its purpose is to
discover from data the structure of a classical Bayesian network.

The qApps all calculate very long sums via a Grover-like algorithm. All 5
applications implement very similar algorithms. They all use a Grover-like algorithm
in conjunction with 2 techniques that we first proposed in Ref.[7] and that we call
“targeting 2 hypotheses” and “blind targeting”.

The algorithms of the qApps could be adapted to work with the original
Grover’s algorithm or some variant thereof, as long as it drives a starting state |s〉
to a target state |t〉. However, the software for v1.6 of the qApps uses my preferred
version of Grover’s algorithm, called AFGA, discussed in Ref.[11].

Apart from their usefulness as code generators, the qApps are interesting in
that they required few lines of code to write, because they rely on classes that form
part of a large class library that had been written previously. This class library has
been used previously to construct many other applications (for example, QuanSuite,
QuSAnn, Multiplexor Expander, Quibbs and QOperAv).

In the notation of Refs.[7, 11],

| 〈s|t〉 |2 = p = |z1|2 + |z0|2 , (1)

1The reason for releasing the first public version of qSym, qMobius, qMargi, qMean and qJen-
nings with such an odd version number is that these 5 applications share many Java classes with
other previous Java applications of mine (QuanSuite discussed in Refs.[1, 2, 3], QuSAnn discussed
in Ref.[4], Multiplexor Expander discussed in Ref.[4], Quibbs discussed in Ref.[5] and QOperAv
discussed in Ref.[6]), so I have made the decision to give all these applications, and the class library
on which they are based, a single unified version number.

2

and

γ = 2 acos(| 〈s|t〉 |) . (2)

Ref.[11] on AFGA gives formulas that allow one to calculate sequences {γj}NGro−1
j=0 and

{ŝj}NGro−1
j=0 from the initial conditions γ0 = γ, and ŝ0 = (sin γ0, 0, cos γ0). Here NGro is

the number of Grover iterations (aka Grover steps). In general, p will not be known a
priori. The qApps all ask that the user estimate the initial ratio |z1|2/|z0|2. The |z0|2
is assumed known a priori, theoretically calculated from the input parameters. The
qApps calculate an estimate of p via Eq.(1), the input estimate of |z1|2/|z0|2 and the
a priori known |z0|2. The qApps output the quantum circuit that should be used to
do one “tail run” of the algorithm with a given p and NGro steps. Using the technique
of blind targeting requires multiple trials to be performed, where each trial consist of
a sequence of tail runs.

2 qSym

The quantum circuit generated by qSym is described in detail in Ref.[7]. The circuit
allows one to calculate

| 〈cn|πSymn|ψ〉 |2 , (3)

where cn ∈ {0, 1, . . . , d− 1}n.

2.1 Input Parameters

Using the notation of Ref.[7], the circuit depends on the following inputs:

n: The number of qudits in |ψ〉.

nsub: The number of sub-qubits in each qudit. Hence, d = 2nsub .

the matrix cn: In Ref.[7], we take cn = (c0, c1, . . . , cn−1), where each cj is a qudit
composed of nsub qubits, so d = 2nsub and cj = (cj,0, cj,1, . . . , cj,nsub−1) ∈ Boolnsub .

a circuit that generates state |ψ〉: The state |ψ〉αn acts on n qudits, each of which
has nsub sub-qubits. The demonstration version of qSym uses a trivial, inconse-
quential circuit for |ψ〉, but this can be changed easily by subclassing the class
of qSym that defines |ψ〉.

an estimate of p = | 〈t|s〉 |2

3

2.2 Output Files

qSym outputs 3 types of files: a Log File, an English File and a Picture File.
A Log File records all the input and output parameters displayed in the Con-

trol Window (see Sec.2.3), so the user won’t forget them.
An English File gives an “in English” description of a quantum circuit. It com-

pletely specifies the output SEO. Each line in it represents one elementary operation,
and time increases as we move downwards in the file.

A Picture File partially specifies the output SEO. It gives an ASCII picture of
the quantum circuit. Each line in it represents one elementary operation, and time
increases as we move downwards in the file. There is a one-to-one onto correspondence
between the rows of corresponding English and Picture Files.

English and Picture Files are used in many of my previous computer programs.
I’ve explained those files in detail in previous papers so I won’t do so again here. See,
for example, Ref.[5] for a detailed description of the content of those files and how to
interpret that content.

2.3 Control Window

Fig.1 shows the Control Window for qSym. This is the main and only window of
qSym (except for the occasional error or advice message window). This window is
open if and only if qSym is running.

4

Figure 1: Control Window of qSym

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the
Write Files button. For example, if the user inserts test in this text field, the
following 3 files will be written:

• test qSym log.txt This is a Log File.

• test qSym eng.txt This is an English File

• test qSym pic.txt This is a Picture File.

Number of Qudits: This equals n.

Sub-qubits per Qudit: This equals nsub.

5

c matrix radio buttons: These radio buttons allow the user to specify the matrix
cn = (cj,k)∀j,k, where j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1, . . . , nsub − 1} and cj,k ∈
Bool. The j index (qudit index) of the radio buttons grows downward and is
indicated by dit 0, dit 1, dit 2, dit 3. The k index (sub-qubit index) of the
radio buttons grows towards the right and is indicated by sub 0, sub 1, sub 2.
For demonstration purposes, this Java applet only allows a maximum number
of 4 qudits and a maximum number of 3 sub-qubits. However, the applet is
based on a class called SymMain which does not have these limitations.

The number of rows (resp., columns) of radio buttons that are visible equals the
number chosen in the Number of Qudits menu (resp., Sub-qubits per Qu-
dit menu). Pressing the Random c Matrix button assigns randomly chosen
values to the c matrix buttons.

Estimate of |z 1|∧2/|z 0|∧2: This equals the user’s initial estimate of |z1|
2

|z0|2 .

Maximum Number of Grover Steps: qSym will stop iterating the AFGA if it
reaches this number of iterations.

Gamma Tolerance (degs): This is an angle given in degrees. qSym will stop iter-
ating the AFGA if the absolute value of γj becomes smaller than this tolerance.
(γj is an angle in AFGA that tends to zero as the iteration index j tends to
infinity. γj quantifies how close the AFGA is to reaching the target state).

Delta Lambda (degs): This is the angle ∆λ of AFGA, given in degrees.

The Control Window displays the following output text boxes.

|z 0|∧2: This equals |z0|2, the probability of the “null” hypothesis of the two hy-
potheses being targeted.

Starting Gamma (degs): This is γ0, the first γj, the γj for the first Grover itera-
tion, given in degrees.

Final Gamma (degs): This is the γj for the final Grover iteration, given in degrees.

Number of Grover Steps: This is NGro, the total number of Grover iterations that
were performed. It must be smaller or equal to the Maximum Number
of Grover Steps. It will be smaller if the Final Gamma (degs) reached
the Gamma Tolerance (degs) before the Maximum Number of Grover
Steps was reached.

Number of Qubits: This is the total number of qubits for the output quantum
circuit.

6

Number of Elementary Operations: This is the number of elementary opera-
tions in the output quantum circuit. Since there are no LOOPs in qSym v1.6,
this is the number of lines in the English File, which equals the number of lines
in the Picture File.

3 qMobius

The quantum circuit generated by qMobius is described in detail in Ref.[8]. The
circuit allows one to calculate

f(xn) =
∑

x−n≤xn
f−(x−n) , (4)

where xn, x−n ∈ Booln and f−(x−n) = | 〈x−n|ψ−〉 |2.

3.1 Input Parameters

Using the notation of Ref.[8], the circuit depends on the following inputs:

n: The number of |ψ−〉 qubits. xn, x−n ∈ Booln.

the vector cn: We desire to calculate f(cn), the Mobius transform f(xn) of f−(x−n)
evaluated at xn = cn ∈ Booln.

a circuit that generates state |ψ−〉: The state |ψ−〉α−n acts on n qubits. The
demonstration version of qMobius uses a trivial, inconsequential circuit for |ψ−〉,
but this can be changed easily by subclassing the class of qMobius that defines
|ψ−〉.

an estimate of p = | 〈t|s〉 |2

3.2 Output Files

Everything we said in Sec.2.2 also applies to the output files of qMobius.

3.3 Control Window

Fig.2 shows the Control Window for qMobius. This is the main and only window
of qMobius (except for the occasional error or advice message window). This window
is open if and only if qMobius is running.

7

Figure 2: Control Window of qMobius

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the
Write Files button. For example, if the user inserts test in this text field, the
following 3 files will be written:

• test qMob log.txt This is a Log File.

• test qMob eng.txt This is an English File

• test qMob pic.txt This is a Picture File.

Number of |psi > Qubits: This equals n.

c vector radio buttons: These radio buttons allow the user to specify the vector
cn = (cj)∀j ∈ Booln. The j index of the radio buttons grows downward and is
indicated by bit 0, bit 1, bit 2, bit 3. For demonstration purposes, this Java
applet only allows a maximum number of 4 |ψ〉 qubits. However, the applet is
based on a class called MobMain which does not have these limitations.

8

The number of rows of radio buttons that are visible equals the number chosen
in the Number of Qubits menu.

Estimate of |z 1|∧2/|z 0|∧2:
Maximum Number of Grover Steps:
Gamma Tolerance (degs):
Delta Lambda (degs):

 Same as in Sec.2.3.

The Control Window displays the following output text boxes.

|z 0|∧2:
Starting Gamma (degs):
Final Gamma (degs):
Number of Grover Steps:
Number of Qubits:
Number of Elementary Operations:

Same as in Sec.2.3. (5)

4 qMargi

The quantum circuit generated by qMargi is described in detail in Ref.[8]. The circuit
allows one to calculate

P (xn0) =
∑
x−n

θ(xn0 = x−n0)P (x−n) , (6)

where n > n0 > 0, x−n = (x−(n−n0), x−n0) ∈ Booln, P−(x−n) = |A−(x−n)|2, and
A−(x−n) = 〈x−n|ψ−〉.

4.1 Input Parameters

Using the notation of Ref.[8], the circuit depends on the following inputs:

n: The number of |ψ−〉 qubits. x−n ∈ Booln.

n0: The number of qubits in the marginalized probability distribution. Must have
n > n0 > 0.

the vector cn0: We desire to calculate
∑

x−(n−n0) P (x−n) evaluated at x−n0 = cn0 ∈
Booln0 .

a circuit that generates state |ψ−〉: The state |ψ−〉α−n acts on n qubits. The
demonstration version of qMargi uses a trivial, inconsequential circuit for |ψ−〉,
but this can be changed easily by subclassing the class of qMargi that defines
|ψ−〉.

an estimate of p = | 〈t|s〉 |2

9

4.2 Output Files

Everything we said in Sec.2.2 also applies to the output files of qMargi.

4.3 Control Window

Fig.3 shows the Control Window for qMargi. This is the main and only window of
qMargi (except for the occasional error or advice message window). This window is
open if and only if qMargi is running.

10

Figure 3: Control Window of qMargi

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the
Write Files button. For example, if the user inserts test in this text field, the
following 3 files will be written:

• test qMargi log.txt This is a Log File.

• test qMargi eng.txt This is an English File

• test qMargi pic.txt This is a Picture File.

Number of |psi > qubits: This equals n.

Number of marginal qubits: This equals n0.

c vector radio buttons: These radio buttons allow the user to specify the vector
cn0 = (cj)∀j ∈ Booln0 . The j index of the radio buttons grows downward and is

11

indicated by bit 0, bit 1, bit 2, bit 3. For demonstration purposes, this Java
applet only allows a maximum number of 7 |ψ〉 qubits and a maximum number
of 4 marginal qubits. However, the applet is based on a class called MargiMain

which does not have these limitations.

The number of rows of radio buttons that are visible equals the number chosen
in the Number of marginal qubits menu.

Estimate of |z 1|∧2/|z 0|∧2:
Maximum Number of Grover Steps:
Gamma Tolerance (degs):
Delta Lambda (degs):

 Same as in Sec.2.3.

The Control Window displays the following output text boxes.

|z 0|∧2:
Starting Gamma (degs):
Final Gamma (degs):
Number of Grover Steps:
Number of Qubits:
Number of Elementary Operations:

Same as in Sec.2.3. (7)

5 qMean

The quantum circuit generated by qMean is described in detail in Ref.[9]. The circuit
allows one to calculate

A =
1

2n

∑
xn

A(xn) , (8)

where A(xn) = 〈xn|ψ〉 and xn ∈ Booln.

5.1 Input Parameters

Using the notation of Ref.[9], the circuit depends on the following inputs:

n: The number of |ψ〉 qubits. xn ∈ Booln.

a circuit that generates state |ψ〉: The state |ψ〉αn acts on n qubits. The demon-
stration version of qMean uses a trivial, inconsequential circuit for |ψ〉, but this
can be changed easily by subclassing the class of qMean that defines |ψ〉.

an estimate of p = | 〈t|s〉 |2

12

5.2 Output Files

Everything we said in Sec.2.2 also applies to the output files of qMean.

5.3 Control Window

Fig.4 shows the Control Window for qMean. This is the main and only window of
qMean (except for the occasional error or advice message window). This window is
open if and only if qMean is running.

13

Figure 4: Control Window of qMean

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the
Write Files button. For example, if the user inserts test in this text field, the
following 3 files will be written:

• test qMean log.txt This is a Log File.

• test qMean eng.txt This is an English File

• test qMean pic.txt This is a Picture File.

Number of |psi > Qubits: This equals n. For demonstration purposes, this Java
applet only allows a maximum number of 4 |ψ〉 qubits. However, the applet is
based on a class called MeanMain which does not have these limitations.

Estimate of |z 1|∧2/|z 0|∧2:
Maximum Number of Grover Steps:
Gamma Tolerance (degs):
Delta Lambda (degs):

 Same as in Sec.2.3.

14

The Control Window displays the following output text boxes.

|z 0|∧2:
Starting Gamma (degs):
Final Gamma (degs):
Number of Grover Steps:
Number of Qubits:
Number of Elementary Operations:

Same as in Sec.2.3. (9)

6 qJennings

The quantum circuit generated by qJennings is described in detail in Ref.[10]. The
circuit allows one to calculate

∑
σ∈Symn

n−1∏
j=0

h(jσ|{< j}σ) (10)

for ordered modular models.

6.1 Input Parameters

Using the notation of Ref.[10], the circuit depends on the following inputs:

n: The number of nodes of the graph G being discovered.

`max: An upper bound on the number of parents any node of G is allowed to have.

a subroutine that returns the value of h(j|S) given its arguments: For the func-
tion h(j|S), j ∈ {0..n − 1} and S ⊂ {0..n − 1\j}. The demonstration version
of qJennings uses a trivial, inconsequential function h(j|S), but this can be
changed easily by rewriting or overriding the method that defines h(j|S).

an estimate of p = | 〈t|s〉 |2

6.2 Output Files

Everything we said in Sec.2.2 also applies to the output files of qJennings.

6.3 Control Window

Fig.5 shows the Control Window for qJennings. This is the main and only window
of qJennings (except for the occasional error or advice message window). This window
is open if and only if qJennings is running.

15

Figure 5: Control Window of qJennings

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the
Write Files button. For example, if the user inserts test in this text field, the
following 3 files will be written:

• test qJen log.txt This is a Log File.

• test qJen eng.txt This is an English File

• test qJen pic.txt This is a Picture File.

Number of Nodes: This equals n.

Maximum Number of Parents: This equals `max. Must have `max ≤ n − 1. For
demonstration purposes, this Java applet only allows a maximum n of 5 and
a maximum `max of 4. However, the applet is based on a class called JenMain

which does not have these limitations.

16

Estimate of |z 1|∧2/|z 0|∧2:
Maximum Number of Grover Steps:
Gamma Tolerance (degs):
Delta Lambda (degs):

 Same as in Sec.2.3.

The Control Window displays the following output text boxes.

|z 0|∧2:
Starting Gamma (degs):
Final Gamma (degs):
Number of Grover Steps:
Number of Qubits:
Number of Elementary Operations:

Same as in Sec.2.3. (11)

References

[1] R.R. Tucci, “QuanTree and QuanLin, Two Special Purpose Quantum Compil-
ers”, arXiv:0712.3887

[2] R.R. Tucci, “QuanFou, QuanGlue, QuanOracle and QuanShi, Four Special Pur-
pose Quantum Compilers”, arXiv:0802.2367

[3] R.R. Tucci, “Java Application that Outputs Quantum Circuit for Some NAND
Formula Evaluators”, arXiv:0802.2370

[4] R.R. Tucci, “Code Generator for Quantum Simulated Annealing”,
arXiv:0908.1633

[5] R.R. Tucci, “Quibbs, a Code Generator for Quantum Gibbs Sampling”,
arXiv:1004.2205

[6] R.R. Tucci, “QOperAv, a Code Generator for Generating Quantum Circuits for
Evaluating Certain Quantum Operator Averages”, arXiv:1010.4926

[7] R.R. Tucci, “Quantum Circuit for Calculating Symmetrized Functions Via
Grover-like Algorithm”, arXiv:1403.6707

[8] R.R. Tucci, “Quantum Circuit for Calculating Mobius-like Transforms Via
Grover-like Algorithm”, arXiv:1403.6910

[9] R.R. Tucci, “Quantum Circuit for Calculating Mean Values Via Grover-like Al-
gorithm”, arXiv:1404.0668

[10] R.R. Tucci, “Quantum Circuit For Discovering from Data the Structure of Clas-
sical Bayesian Networks”, arXiv:1404.0055

17

[11] R.R. Tucci, “An Adaptive, Fixed-Point Version of Grover’s Algorithm”,
arXiv:1001.5200

18

