
Method For Discovering

Structure of a Bayesian Network

Via a Quantum Computer

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

March 24, 2014

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

The following related patent applications are to be filed on the same day as this one:

• “Method For Calculating Symmetrized Functions Via a Quantum Computer”,

by R.R. Tucci

• “Method For Calculating Mobius-like Transforms Via a Quantum Computer”,

by R.R. Tucci

• “Method For Calculating Mean Values Via a Quantum Computer”, by R.R.

Tucci

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing consisting of a single file entitled ArQ-Src1-6.txt, in

ASCII format, is included with this patent application.

2

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.Bra1 is G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, “Quantum amplitude

amplification and estimation”, arXiv:quant-ph/0005055

Ref.Bra2 is G. Brassard, F. Dupuis, S. Gambs, and A. Tapp, “An optimal quantum

algorithm to approximate the mean and its application for approximating the

median of a set of points over an arbitrary distance”, arXiv:1106.4267

Ref.CoHe is G.F. Cooper, and E. Herskovits, “A Bayesian method for the induc-

tion of probabilistic networks from data”, Machine learning 9.4 (1992): 309-347.

Ref.Dev is S. Devitt, Kae Nemoto, and W. Munro, “Quantum error correction for

beginners”, arXiv:0905.2794.

Ref.ElWo is B. Ellis, and Wing Hung Wong, “Learning causal Bayesian network

structures from experimental data”, Journal of the American Statistical Asso-

ciation 103.482 (2008).

Ref.FrKo is N. Friedman, and D. Koller, “Being Bayesian about network structure.

A Bayesian approach to structure discovery in Bayesian networks”, Machine

learning 50.1-2 (2003): 95-125.

3

Ref.GPat is Lov K. Grover, “Fast Quantum Mechanical Algorithms”, US Patent

6,317,766

Ref.HeTi is Ru He, Jian Tian, “Bayesian Learning in Bayesian Networks of Mod-

erate Size by Efficient Sampling”. Unpublished.

Ref.Koi is M. Koivisto, “Advances in exact Bayesian structure discovery in Bayesian

networks”, , arXiv:1206.6828

Ref.KoSo is M. Koivisto, and K. Sood, “Exact Bayesian structure discovery in

Bayesian networks”, The Journal of Machine Learning Research 5 (2004): 549-

573.

Ref.Tuc-qJen is R.R. Tucci, “Quantum Circuit For Discovering from Data the

Structure of Classical Bayesian Networks”. Unpublished. Copy included as an

appendix to this patent application.

Ref.Tuc-qLis is R.R. Tucci, “qSym, qMobius, qMargi, qMean and qJennings, 5

Code Generators for Generating Quantum Circuits that Perform Some Artificial

Intelligence Related Tasks”. Unpublished. Copy included as an appendix to this

patent application.

Ref.Tuc-qMob is R.R. Tucci, “Quantum Circuit for Calculating Mobius-like Trans-

forms Via Grover-like Algorithm”. Unpublished. Copy included as an appendix

to this patent application.

Ref.Tuc-qSym is R.R. Tucci, “Quantum Circuit for Calculating Symmetrized Func-

tions Via Grover-like Algorithm”. Unpublished. Copy included as an appendix

to this patent application.

Ref.TucAFGA is R.R. Tucci, “An Adaptive, Fixed-Point Version of Grover’s Al-

gorithm”, arXiv:1001.5200

4

Ref.TucAFGApat is R.R. Tucci, “Method for Driving Starting Quantum State to

Target One”, US Patent 8,527,437

Ref.TucQuibbs is R.R. Tucci, “Quibbs, a Code Generator for Quantum Gibbs

Sampling”, arXiv:1004.2205

Ref.TucSimAnn is R.R. Tucci, “Code Generator for Quantum Simulated Anneal-

ing”, arXiv:0908.1633

Ref.WiKaSv is N. Wiebey, A. Kapoor, and K. Svore, “Quantum Nearest-Neighbor

Algorithms for Machine Learning”, arXiv:1401.2142

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, matrices, instructions, steps

or gates. Furthermore, we will abbreviate the phrase “sequence of elementary oper-

ations” by “SEO”. SEOs for quantum computers are often represented by quantum

circuits. In the quantum computing literature, the term “quantum algorithm” usu-

ally means a SEO for quantum computers for performing a desired calculation. Some

quantum algorithms have become standard, such as those due to Deutsch-Jozsa, Shor

and Grover. One can find on the Internet many excellent expositions on quantum

computing.

Our algorithm utilizes the original Grover’s algorithm (see Ref.GPat) or

any variant thereof, as long as it accomplishes the task of driving a starting state |s⟩

towards a target state |t⟩. However, we recommend to the users of our algorithm that

5

they use a variant of Grover’s algorithm called AFGA (adaptive fixed point Grover’s

algorithm) which was first proposed in Ref.TucAFGA and Ref.TucAFGApat .

This invention gives a quantum circuit for calculating the probability P (G|D)

of a graph G given data D. G together with a transition probability matrix for

each node of the graph, constitutes a Classical Bayesian Network, or CB net for

short. Bayesian methods for calculating P (G|D) have been given before (the so

called structural modular and ordered modular models), but these earlier methods

were designed to work on a classical computer. The goal of this invention is to

“quantum computerize” those earlier methods.

Often in the literature, the word “model” is used synonymously with “CB net”

and the word “structure” is used synonymously with the bare “graph” G, which is

the CB net without the associated transition probabilities.

The Bayesian methods for calculating P (G|D) that we will discuss in this

patent assume a “meta” CB net to predict P (G|D) for a CB net with graph G. The

meta CB nets usually assumed have a “modular” pattern. Two types of modular

meta CB nets have been studied in the literature. We will call them in this patent

unordered modular and ordered modular models although unordered modular models

are more commonly called structural modular models.

Calculations with unordered modular models require that sums
∑

G over graphs

G be performed. Calculations with ordered modular models require that, besides sums∑
G, sums

∑
σ over “orders” σ be performed. In some methods these two types of

sums are performed deterministically; in others, they are both performed by doing

MCMC sampling of a probability distribution. Some hybrid methods perform some

of those sums deterministically and others by sampling.

One of the first papers to propose unordered modular models appears to be

Ref.CoHe by Cooper and Herskovits. Their paper proposed performing the
∑

G by

sampling.

6

One of the first papers to propose ordered modular models appears to be

Ref.FrKo by Friedman and Koller. Their paper proposed performing both
∑

G and∑
σ by sampling.

Later on, Ref.KoSo , Ref.Koi by Koivisto and Sood proposed a way of

doing
∑

G deterministically using a technique they call fast Mobius transform, and

performing
∑

σ also deterministically by using a technique they call DP (dynamic

programming).

Since the initial work of Koivisto and Sood, several workers (see, for example,

Ref.ElWo , Ref.HeTi) have proposed hybrid methods that use both sampling and

the deterministic methods of Koivisto and Sood.

So how can one quantum computerize to some extent the earlier classical

computer methods for calculating P (G|D)? One partial way is to replace sampling

with classical computers by sampling with quantum computers (QCs). An algorithm

for sampling CB nets on a QC has been proposed by Tucci in Ref.TucQuibbs . A

second possibility is to replace the deterministic summing of
∑

G or
∑

σ by quantum

summing of the style discussed in Ref.Tuc-qSym , Ref.Tuc-qMob , wherein one

uses Grover’s algorithm and the technique of targeting two hypotheses. This second

possibility is what will be discussed as the preferred embodiments of this invention,

for both types of modular models.

Finally, let us mention that some earlier workers (see, for example,Ref.WiKaSv

and references therein) have proposed using a quantum computer to do AI related

calculations reminiscent of the ones being tackled by this invention. However, the

methods proposed by those workers differ greatly from the ones in this invention.

Those workers either don’t use Grover’s algorithm, or if they do, they don’t use our

techniques of targeting two hypotheses and blind targeting.

7

BRIEF SUMMARY OF THE INVENTION

A preferred embodiment of the invention is qJennings, a computer program written

in Java. Source code for qJennings1.6 is included as an appendix to this patent.

qJennings is a “code generator” for generating quantum circuits. The quantum cir-

cuits generated by qJennings can be used to calculate the probability P (G|D) of a

graph (aka structure) G given data D, for a classical Bayesian network with graph G.

qJennings calculates such probabilities for so called ordered modular models. Other

embodiments of the invention calculate such probabilities for so called unordered

modular models.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows equations that describe technique of targeting two hypotheses.

FIG.3 shows equations that define certain quantities that arise in the circuit of

FIG.4.

FIG.4 shows quantum circuit used to generate starting state |s⟩ used in AFGA.

FIG.5 shows equations that describe properties of starting state |s⟩ generated by

the circuit of FIG.4.

FIG.6 shows quantum circuit of FIG.4 if one assumes that ℓ ≤ 1, or, equivalently,

that no node of the graph G has more than 1 parent, where G is the graph

whose probability we are seeking to estimate.

FIG.7 shows Control Window of qJennings.

8

DETAILED DESCRIPTION OF THE INVENTION

This section describes in detail a preferred embodiment of the invention and other pos-

sible embodiments of the invention. For a more detailed description of possible embod-

iments of this invention, see Ref.Tuc-qJen , Ref.Tuc-qLis , Ref.TucAFGApat

and references therein.

A preferred embodiment of the invention is qJennings, a computer program

written in Java. Source code for qJennings1.6 is included as an appendix to this

patent. qJennings is a “code generator” for generating quantum circuits. The quan-

tum circuits generated by qJennings can be used to calculate the probability P (G|D)

of a graph (aka structure) G given data D, for a classical Bayesian network with

graph G. qJennings calculates such probabilities for so called ordered modular mod-

els. Other embodiments of the invention calculate such probabilities for so called

unordered modular models.

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. qJennings1.6 software runs inside

Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box 101 represents input

devices, such as a mouse or a keyboard. Box 102 comprises the CPU, internal and

external memory units. Box 102 does calculations and stores information. Box 103

represents output devices, such as a printer or a display screen. Box 105 represents

a quantum computer, comprising an array of quantum bits and some hardware for

manipulating the state of those bits.

The remainder of this section is divided into 3 subsections. Subsection (A) de-

scribes the quantum circuit generated by qJennings. Subsection (B) describes qJen-

nings’s user interface. Subsection (C) discusses other possible embodiments of the

invention.

9

(A)qJennings: Quantum Circuit

In this section, we describe the quantum circuit generated by qJennings. For a more

detailed description of the circuit, see Ref.Tuc-qJen .

The full algorithm utilizes the original Grover’s algorithm or any variant

thereof, as long as the algorithm drives a starting state |s⟩ to a target state |t⟩. For

concreteness, we will assume for the preferred embodiment of this invention that we

are using a variant of Grover’s algorithm called AFGA, described in Ref.TucAFGA

and Ref.TucAFGApat .

Consider FIG.2.

FIG.2 describes what we will call “targeting two hypotheses”. Targeting two

hypotheses is a trick that can sometimes be used when applying Grover’s original

algorithm or some variant thereof. Sometimes it is possible to arrange things so that

the target state is a superposition a0|0⟩+ a1|1⟩ of two orthonormal states |0⟩ and |1⟩,

so that if we know a0, we can infer a1, a type of hypothesis testing with 2 hypotheses.

If the target state were just proportional to say |0⟩, then its component along |0⟩

would be 1 after normalization so one wouldn’t be able to do any type of amplitude

inference.

Suppose z0, z1 are complex numbers and |χ⟩ is an unnormalized state that

satisfy 201. Define p and q by 202.

Let µ, ν and ω label subsystems. Assume the states |ψ0⟩µ and |ψ1⟩µ are

orthonormal, the states |0⟩ν and |1⟩ν are orthonormal, and the states |0⟩ω and |1⟩ω
are orthonormal.

We want to use AFGA with a starting state given by 203 and a target state

given by 204.

It’s easy to check that 205 and 206 are true. |t⟩ only appears in AFGA within

the projection operator |t⟩⟨t|, and this projection operator always acts solely on the

space spanned by |t⟩ and |s⟩. But |t⟩⟨t| and |0⟩⟨0|ω act identically on that space.

Hence, for the purposes of AFGA, we can replace |t⟩⟨t| by |0⟩⟨0|ω. We will call |0⟩ω

10

the “sufficient” target state to distinguish it from the full target state |t⟩µ,ν,ω.

Recall that AFGA converges in order 1/|⟨t|s⟩| steps. From the definitions of

|s⟩ and |t⟩, one finds 207.

Once system (µ, ν, ω) has been driven to the target state |t⟩µ,ν,ω, one can

measure the subsystem ν while ignoring the subsystem (µ, ω). If we do so, the outcome

of the measurements of ν can be predicted from the partial density matrix 208. From

this density matrix, one gets 209 and 210.

At first sight, it seems that Grover-like algorithms and AFGA in particular re-

quire knowledge of |⟨t|s⟩|. Next, we will describe a technique called “blind targeting”

for bypassing that onerous requirement.

For concreteness, we will assume in our discussion below that we are using

AFGA and that we are targeting two hypotheses, but the idea of this technique could

be carried over to other Grover-like algorithms in a fairly obvious way.

According to 207, when targeting two hypotheses, |⟨t|s⟩| = √
p. Suppose we

guess-timate p, and use that estimate and the AFGA formulas of Ref.TucAFGA

to calculate the various rotation angles αj for j = 0, 1, . . . , NGro − 1, where NGro is

the number of Grover steps. Suppose NGro is large enough. Then, in the unlikely

event that our estimate of p is perfect, as j → NGro − 1, ŝj will converge to t̂. On

the other hand, if our estimate of p is not perfect but not too bad either, we expect

that as j → NGro − 1, the point ŝj will reach a steady state in which, as j increases,

ŝj rotates in a small circle in the neighborhood of t̂. After steady state is reached, all

functions of ŝj will vary periodically with j.

Suppose we do AFGA with p fixed and with NGro = (NGro)0 + r Grover steps

where r = 0, 1, . . . Ntail − 1. Call each r a “tail run”, so p is the same for all Ntail tail

runs, but NGro varies for different tail runs. Suppose that steady state has already

been reached after (NGro)0 steps. For any quantity Qr where r = 0, 1, . . . Ntail−1, let

⟨Q⟩LP denote the outcome of passing the Ntail values of Qr through a low pass filter

that takes out the AC components and leaves only the DC part. For example, ⟨Q⟩LP

11

might equal
∑

rQr/Ntail or [maxrQr +minrQr]/2. By applying the SEO of tail run

r to a quantum computer several times, each time ending with a measurement of the

quantum computer, we can obtain values Pr(0) and Pr(1) of P (0) and P (1) for tail

run r. Then we can find
⟨√

P (1)/P (0)
⟩
LP

= ⟨|z1|/|z0|⟩LP . But we also expect to

know |z0|, so we can use ⟨|z1|/|z0|⟩LP |z0| as an estimate of |z1|. This estimate of |z1|

and the known value of |z0| yield a new estimate of p = |z1|2+ |z0|2, one that is much

better than the first estimate we used. We can repeat the previous steps using this

new estimate of p. Every time we repeat this process, we get a new estimate of p that

is better than our previous estimate. Call a “trial” each time we repeat the process

of Ntail tail runs. p is fixed during a trial, but p varies from trial to trial.

Next consider FIG.3.

301 defines a graph G (aka a structure) as an n-tuple of sets paj which are

subsets of the set {0, 1, . . . , n− 1} = {0..n− 1}, where n is the number of vertices

(aka nodes) of the graph G that we are trying to discover from the data D. Let F ,

called a feature set, be a set of graphs G.

302 defines the probability P (F|D) for unordered modular models. In 302:

An 1S(x) denotes an indicator function: it equals 1 if x ∈ S and 0 otherwise. θ(X)

is a truth function: it equals 1 if X is true and 0 otherwise. The product
∏

j is

over all vertices from 0 to n − 1. The feature set F is a cartesian product of sets

Fj ∈ 2{0..n−1}. The symbol {< j} denotes all integers from 0 to j − 1. The functions

βj() are specified by the user.

303 defines the probability P (F|D) for ordered modular models. In 303: We

put a line over the P for the ordered modular case to distinguish it from the P for

the unordered modular case. Symn denotes the set of permutations on n letters. xσ

or σ(x) denotes the outcome of applying the permutation σ to x. Given any set S

and permutation σ, Sσ equals a new set obtained by applying the permutation σ to

each element of the original set S. The functions h() in 303 are specified by the user.

Suppose j, S and ℓ satisfy 304. By {0..n− 1\j} we mean all elements of

12

set {0..n− 1} except for j. Then h(j|S), θj|S and R
j|S
y are related by 305. It is

convenient to define the parameters N2() and ϵ by 306.

The V operators used in FIG.4 are not unique. Any definition that satisfies

307 and 308 will work in the preferred embodiment of the invention. Ref.Tuc-qSym

gives a specific definition of the V operators that satisfies 307 and 308.

FIG.4 uses multiply controlled rotations with halfmoon vertices. The half-

moon vertices are defined by 309, where H stands for a one-qubit Hadamard matrix.

The goal of the invention is to give a method whereby a user can calculate

(1) the probability P (F|D) given by 302 for unordered modular models and (2) the

probability P (F|D) given by 303 for ordered modular models.

302 for unordered modular models consists of a product over j of Mobius

transforms. Such Mobius transforms can be calculated using the method described in

a previous patent application by Tucci and in the paper Ref.Tuc-qMob by Tucci.

The preferred embodiment of this invention is a Java applet called qJennings

v1.6 included as an appendix to this patent. qJennings outputs a quantum circuit

which can be used to calculate 303 for ordered modular models.

Next consider FIG.4.

Our preferred method for calculating P (F|D) consists of applying AFGA using

the techniques of targeting two hypotheses and blind targeting. When we apply

AFGA, we will use a sufficient target |0⟩ω. All that remains for us to do to fully

specify our circuit for calculating P (F|D) is to give a circuit for generating |s⟩. That

is what FIG.4 does. FIG.4 assumes that n, the number of nodes of the graph G

being discovered, equals 3 for concreteness. That figure uses fairly standard quantum

circuit notation except for the V operators and the “half-moon vertices” which have

been defined already in FIG.3. The H stands for Hadamard matrix, σX for the X

Pauli matrix, etc. More detailed explanations of the symbols in FIG.4 can be found

in Ref.Tuc-qJen . Note that every horizontal line of FIG.4 is a qubit.

Let α include all alpha qubits in FIG.4. Let β include all beta qubits in FIG.4.

13

Next consider FIG.5.

Assuming that the circuit of FIG.4 is correct, then that circuit will generate

the state |s⟩ given by 501, where |χ⟩ is an unnormalized state and where 502 through

506 are satisfied. (If there is some small mistake in the circuit of FIG.4, then we

should be able to find that mistake in the future and make small amendments to

FIG.4 with the goal of generating an |s⟩ that satisfies 501).

Next consider FIG.6.

A serious problem with using the circuit of FIG.4 for large n is that the number

of β qubits grows exponentially with n so the circuit FIG.4 is too expensive for large

n’s. However, one can make an assumption which doesn’t seem too restrictive, namely

that the in-degree (number of parent nodes) ℓ of all nodes of the graph G is ≤ ℓmax,

where the bound ℓmax does not grow with n. For example, if ℓ ≤ ℓmax = 1 in FIG.4,

then we can omit all the β;2 qubits, and the R
a|{b,c}
y rotations for a, b, c ∈ {0, 1, 2}. In

other words, FIG.4 can be simplified to FIG.6.

(B)qJennings: User Interface

In this section, we describe qJennings’s user interface. For a more detailed description

of the interface, see Ref.Tuc-qLis .

(B1)Input Parameters

qJennings expects the following inputs:

n: The number of nodes of the graph G being discovered.

ℓmax: An upper bound on the number of parents any node of G is allowed to have.

a subroutine that returns the value of h(j|S) for any j ∈ {0..n − 1} and S ⊂

{0..n − 1\j}. The demonstration version of qJennings uses a trivial, inconse-

quential function h(j|S), but this can be changed easily by rewriting or over-

riding the method that defines h(j|S).

14

an estimate of p = |⟨t|s⟩|2

(B2)Output Files

qJennings outputs 3 types of files: a Log File, an English File and a Picture File.

A Log File records all the input and output parameters displayed in the Con-

trol Window (see section entitled “Control Window”), so the user won’t forget

them.

An English File gives an “in English” description of a quantum circuit. It com-

pletely specifies the output SEO. Each line in it represents one elementary operation,

and time increases as we move downwards in the file.

A Picture File partially specifies the output SEO. It gives an ASCII picture of

the quantum circuit. Each line in it represents one elementary operation, and time

increases as we move downwards in the file. There is a one-to-one onto correspondence

between the rows of corresponding English and Picture Files.

English and Picture Files are used in many of my previous computer programs.

I’ve explained those files in detail in previous papers so I won’t do so again here. See,

for example, Ref.TucQuibbs for a detailed description of the content of those files

and how to interpret that content.

(B3)Control Window

FIG.7 shows the Control Window for qJennings. This is the main and only window

of qJennings (except for the occasional error or advice message window). This window

is open if and only if qJennings is running.

The Control Window allows the user to enter the following inputs:

File Prefix: Prefix to the 3 output files that are written when the user presses the

Write Files button. For example, if the user inserts test in this text field, the

following 3 files will be written:

• test qJen log.txt This is a Log File.

15

• test qJen eng.txt This is an English File

• test qJen pic.txt This is a Picture File.

Number of Nodes: This equals n.

Maximum Number of Parents: This equals ℓmax. Must have ℓmax ≤ n − 1. For

demonstration purposes, this Java applet only allows a maximum n of 5 and

a maximum ℓmax of 4. However, the applet is based on a class called JenMain

which does not have these limitations.

Estimate of |z 1|∧2/|z 0|∧2: This equals the user’s initial estimate of |z1|2/|z0|2.

Maximum Number of Grover Steps: qJennings will stop iterating the AFGA if

it reaches this number of iterations.

Gamma Tolerance (degs): This is an angle given in degrees. qJennings will stop

iterating the AFGA if the absolute value of γj becomes smaller than this toler-

ance. (γj is an angle in AFGA that tends to zero as the iteration index j tends

to infinity. γj quantifies how close the AFGA is to reaching the target state).

Delta Lambda (degs): This is the angle ∆λ of AFGA, given in degrees.

The Control Window displays the following output text boxes.

|z 0|∧2: This equals |z0|2, the probability of the “null” hypothesis of the two hy-

potheses being targeted.

Starting Gamma (degs): This is γ0, the first γj, the γj for the first Grover itera-

tion, given in degrees.

Final Gamma (degs): This is the γj for the final Grover iteration, given in degrees.

Number of Grover Steps: This is NGro, the total number of Grover iterations that

were performed. It must be smaller or equal to the Maximum Number

16

of Grover Steps. It will be smaller if the Final Gamma (degs) reached

the Gamma Tolerance (degs) before the Maximum Number of Grover

Steps was reached.

Number of Qubits: This is the total number of qubits for the output quantum

circuit.

Number of Elementary Operations: This is the number of elementary opera-

tions in the output quantum circuit. Since there are no LOOPs in qJennings

v1.6, this is the number of lines in the English File, which equals the number

of lines in the Picture File.

(C)Other Embodiments

In this section, we describe other possible embodiments of the invention.

A standard definition in the field of quantum computation is that a qu(d)it

is a quantum state that belongs to a d dimensional vector space and a qubit is a

qu(d)it with d = 2. In quantum error correction (see Ref.Dev for an introduction),

one distinguishes between 2 types of qu(d)its, physical and logical. A logical qu(d)it

consists of a number of physical qu(d)its. It goes without saying that the qu(d)its in

the quantum circuit FIG.4 (or variant thereof) can always be interpreted as logical

qu(d)its, and additional gates can be added to FIG.4 (or variant thereof) with the

purpose of performing error correction.

For convenience, the quantum circuits generated by an embodiment of this

invention may include gates that act on more than 3 qubits at a time. Such “fat” gates

might be judged by some not to be elementary gates as defined earlier in this patent.

However, such fat gates should be allowed inside the SEO’s covered by this invention

for cases in which they are trivially expandable (TE) fat gates. By TE fat gates

we mean, fat gates for which there are well known, expanding methods for replacing

them by a sequence of gates that are strictly elementary, in the sense that they act

17

on just one or two qubits at a time. Multi-controlled rotations and multiplexors

are examples of TE fat gates. In fact, see the Java classes MultiCRotExpander and

MultiplexorExpander and related classes included in the code listing appendix to

this patent. These classes automate such expanding methods for multi-controlled

rotations and multiplexors.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

18

