References section (annotated by R.R.Tucci) of the paper: "Natural and artificial atoms for quantum computation" by Iulia Buluta, Sahel Ashhab, Franco Nori http://arxiv.org/abs/1002.1871 introduction [1] Immanuel Bloch. Quantum coherence and entanglement with ultracold atoms in optical lattices. Nature, 453:1016Ð1022, 2008. http://www.physik.fu-berlin.de/~pelster/Vorlesungen/SS09/BEC/lattice.pdf http://www.nature.com/nature/journal/v453/n7198/abs/nature07126.html [2] R. Blatt and D.J. Wineland. Entangled states of trapped atomic ions. Nature, 453:1008Ð1015, 2008. http://www.amop.phy.cam.ac.uk/amop-mk/teaching/nature07125.pdf http://www.nature.com/nature/journal/v453/n7198/abs/nature07125.html [3] John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature, 453:1031Ð1042, 2008. http://www.qudev.ethz.ch/content/courses/QSIT08/pdfs/Clarke2008.pdf http://www.nature.com/nature/journal/v453/n7198/abs/nature07128.html [4] J. Q. You and F. Nori. Superconducting circuits and quantum information. Physics Today, 58(11):42Ð47, 2005. http://arxiv.org/abs/quant-ph/0601121 [5] Ronald Hanson and David D. Awschalom. Coherent manipulation of single spins in semiconductors. Nature, 453:1043Ð1049, 2008. http://www.citg.tudelft.nl/live/pagina.jsp?id=1facd289-2d36-423c-a595-b6f78063b316&lang=en&binary=/doc/2008-NatureInsight-CoherentManipulationOfSpins-Hanson.pdf http://www.nature.com/nature/journal/v453/n7198/abs/nature07129.html [6] L. M. K. Vandersypen and I. L. Chuang. Nmr techniques for quantum control and computation. Rev. Mod. Phys., 76:1037Ð1069, 2005. http://arxiv.org/abs/quant-ph/0404064 [7] J. Baugh, J. Chamilliard, C. M. Chandrashekar, M. Ditty, A. Hubbard, R. Laflamme, M. Laforest, D. Maslov, O. Moussa, C. Negrevergne, M. Silva, S. Simmons, C. A. Ryan, D. G. Cory, J. S. Hodges, and C. Ramanathan. Quantum information processing using nuclear and electron magnetic resonance: review and prospects. arXiv:0710.1447v1, 2007. http://arxiv.org/abs/0710.1447 [8] B. E. Kane. A silicon-based nuclear spin quantum computer. Nature, 393:133Ð137, 1998. http://www.physics.princeton.edu/~mcdonald/examples/QM/kane_nature_393_133_98.pdf http://www.nature.com/nature/journal/v393/n6681/abs/393133a0.html [9] John J. L. Morton, Alexei M. Tyryshkin, Richard M. Brown, Shyam Shankar, Brendon W. Lovett, Arzhang Ardavan, Thomas Schenkel, Eugene E. Haller, Joel W. Ager, and S. A. Lyon. Solid-state quantum memory using the 31p nuclear spin. Nature, 455:1085Ð1088, 2008. http://arxiv.org/abs/0803.2021 [10] Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn. Linear optical quantum computing with photonic qubits. Reviews of Modern Physics, 79:135, 2007. http://phys.lsu.edu/~jdowling/publications/Kok07.pdf [11] N. Gisin and R. Thew. Quantum communication. Nature Photonics, 1:165Ð171, 2007. http://arxiv.org/abs/quant-ph/0703255 [12] Yevhen Miroshnychenko, Wolfgang Alt, Igor Dotsenko, Leonid Forster, Mkrtych Khudaverdyan, Dieter Meschede, Dominik Schrader, and Arno Rauschenbeutel. Quantum engineering: An atom-sorting machine. Nature, 442:151, 2006. http://www.nature.com/nature/journal/v442/n7099/abs/442151a.html [13] J.e Beugnon, Charles Tuchendler, Harold Marion, Alpha Gaetan, Yevhen Miroshnychenko, Yvan R. P. Sortais, Andrew M. Lance, Matthew P. A. Jones, Gaetan Messin, Antoine Browaeys, and Philippe Grangier. Two-dimensional transport and transfer of a single atomic qubit in optical tweezers. Nature Physics, 3:696Ð699, 2007. http://arxiv.org/abs/0705.0312 [14] Karl D. Nelson, Xiao Li, and David S.Weiss. Imaging single atoms in a three-dimensional array. Nature Physics, 3:556Ð560, 2007. http://www.phys.psu.edu/~dsweiss/Nature%20Physics%20imaging%20single%20atoms.pdf http://www.nature.com/nphys/journal/v3/n8/abs/nphys645.html [15] Peter W¬urtz, Tim Langen, Tatjana Gericke, Andreas Koglbauer, and Herwig Ott. Experimental demonstration of singlesite addressability in a two-dimensional optical lattice. arXiv:0903.4837v1, 2009. http://arxiv.org/abs/0903.4837 [16] O. Mandel, Markus Greiner, Artur Widera, Tim Rom, Theodor W. H¬ansch, and Immanuel Bloch. Controlled collisions for multi-particle entanglement of optically trapped atoms. Nature, 425:937Ð940, 2003. http://arxiv.org/abs/quant-ph/0308080 neutral atoms [17] Marco Anderlini, Benjamin L. Brown Patricia J. Lee and, Jennifer Sebby-Strabley, William D. Phillips, and J. V. Porto. Controlled exchange interaction between pairs of neutral atoms in an optical lattice. Nature, 448:452Ð456, 2007. http://arxiv.org/abs/0708.2073 [18] David Hayes, Paul S. Julienne, and Ivan H. Deutsch. Quantum logic via the exchange blockade in ultracold collisions. Phys. Rev. Lett., 98:070501, 2007. http://arxiv.org/abs/quant-ph/0609111 [19] S. Trotzky, P. Cheinet, S. Folling, M. Feld, U. Schnorrberger, A. M. Rey, A. Polkovnikov, E. A. Demler, M. D. Lukin, and I. Bloch. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science, 319:295Ð299, 2008. http://arxiv.org/abs/0712.1853 [20] A. Micheli, G. K. Brennen, and P. Zoller. A toolbox for lattice-spin models with polar molecules. Nature Physics, 2:341Ð347, 2006. http://arxiv.org/abs/quant-ph/0512222 [21] E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman. Observation of rydberg blockade between two atoms. Nature Physics, 5:110Ð114, 2009. http://arxiv.org/abs/0805.0758 [22] M. Saffman, T. G. Walker, and K. Molmer. Quantum information with rydberg atoms. arXiv:0909.4777v1, 2009. http://arxiv.org/abs/0909.4777 [23] L. Isenhower, E. Urban, T. Henage, X. L. Zhang, A. T. Gill, T. A. Johnson, T. G. Walker, and M. Saffman. Demonstration of a neutral atom controlled-not quantum gate. arXiv:0907.5552v1, 2009. http://arxiv.org/abs/0907.5552 [24] D. Jaksch and P. Zoller. The cold atom hubbard toolbox. Annals of Physics, 315:52Ð79, 2005. http://arxiv.org/abs/cond-mat/0410614 [25] Maciej Lewenstein, Anna Sanpera, Veronica Ahufinger, Bogdan Damski, Aditi Sen(De), and Ujjwal Sen. Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Advances in Physics, 56:243Ð379, 2007. http://arxiv.org/abs/cond-mat/0606771 [26] Alastair Kay, Jiannis K. Pachos, and Charles S. Adams. Graph-state preparation and quantum computation with global addressing of optical lattices. Phys. Rev. A, 73:022310, 2006. http://arxiv.org/abs/quant-ph/0501166 ions [27] A. H. Myerson, D. J. Szwer, S. C. Webster, D. T. C. Allcock, M. J. Curtis, G. Imreh, J. A. Sherman, D. N. Stacey, A. M. Steane, and D. M. Lucas. High-fidelity readout of trapped-ion qubits. Phys. Rev. Lett., 100:200502, 2008. http://arxiv.org/abs/0802.1684 [28] D. Kielpinski. Ion-trap quantum information processing: experimental status. Frontiers of Physics in China, 3:365Ð381, 2008. http://arxiv.org/abs/0805.2450 [29] M. Riebe, K. Kim, P. Schindler, T. Monz, P. O. Schmidt, T. K. Korber, W. Hansel, H. Haffner, C. F. Roos, and R. Blatt. Process tomography of ion trap quantum gates. Phys. Rev. Lett., 97:220407, 2006. http://arxiv.org/abs/quant-ph/0609228 [30] Jan Benhelm, Gerhard Kirchmair, Christian F. Roos, and Rainer Blatt. Towards fault-tolerant quantum computing with trapped ions. Nature Physics, 4:463Ð466, 2008. http://arxiv.org/abs/0803.2798 [31] T. Monz, K. Kim, W. Hansel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt. Realization of the quantum toffoli gate with trapped ions. Phys. Rev. Lett., 102:040501, 2009. http://arxiv.org/abs/0804.0082 [32] H. H¬affner, W. H¬ansel, C. F. Roos, J. Benhelm, D. Chek al kar, M. Chwalla, T. K¬orber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. G¬uhne, W. D¬ur, and R. Blatt. Scalable multiparticle entanglement of trapped ions. Nature, 438:643Ð646, 2005. http://arxiv.org/abs/quant-ph/0603217 [33] D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland. Creation of a six-atom Õschr¬odinger catÕ state. Nature, 438:639Ð642, 2005. http://tf.nist.gov/general/abs/2077.pdf http://www.nature.com/nature/journal/v438/n7068/abs/nature04251.html [34] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, and D. J. Wineland & C. Monroe*. Experimental entanglement of four particles. Nature, 404:256Ð259, 2000. http://128.112.100.2/~mcdonald/examples/QM/sackett_nature_404_256_00.pdf http://www.nature.com/nature/journal/v404/n6775/abs/404256a0.html [35] J. I. Cirac and P. Zoller. A scalable quantum computer with ions in an array of microtraps. Nature, 404:579Ð581, 2000. http://www.nature.com/nature/journal/v404/n6778/abs/404579a0.html [36] Stephan Gulde, Mark Riebe, Gavin P. T. Lancaster, Christoph Becher, Jurgen Eschner, Hartmut Haffner, Isaac L. Chuang, Rainer Blatt, and Ferdinand Schmidt-Kaler. Implementation of the deutschjozsa algorithm on an ion-trap quantum computer. Nature, 421:48Ð50, 2003. http://feynman.mit.edu/ike/homepage/papers/QC-guilde-riebe-lancaster-becher-eschner-haffner-schmidt-kaler-chuang-blatt-implementation-of-the-deutsch-jozsa-algorithm-on-an-ion-trap-quantum-computer-nature-v421-p48-2003.pdf http://www.nature.com/nature/journal/v421/n6918/abs/nature01336.html [37] J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D. J. Wineland. Implementation of the semiclassical quantum fourier transform in a scalable system. Science, 308:997Ð1002, 2005. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.77.5915&rep=rep1&type=pdf http://www.sciencemag.org/cgi/content/abstract/308/5724/997 [38] M. D. Barrett, J. Chiaverini, T. Schaetz, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, D. Leibfried, R. Ozeri, and D. J. Wineland. Deterministic quantum teleportation of atomic qubits. Nature, 429:737Ð739, 2004. http://www.hep.princeton.edu/~mcdonald/examples/QM/barrett_nature_429_737_04.pdf http://www.nature.com/nature/journal/v429/n6993/abs/nature02608.html [39] M. Riebe, H. Haffner, C. F. Roos, W. Hansel, J. Benhelm, G. P. T. Lancaster, T. W. Korber, C. Becher, F. Schmidt-Kaler, D. F. V. James, and R. Blatt. Deterministic quantum teleportation with atoms. Nature, 429:734Ð737, 2004. http://www2.physics.utoronto.ca/~dfvj/Publications%20by%20Daniel%20F%20V%20James/1-Refereed_Publications/52_Teleportation.pdf http://www.nature.com/nature/journal/v429/n6993/abs/nature02570.html [40] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe. Entanglement of single-atom quantum bits at a distance. Nature, 449:68Ð71, 2007. http://deepblue.lib.umich.edu/bitstream/2027.42/62780/1/nature06118.pdf http://www.nature.com/nature/journal/v449/n7158/abs/nature06118.html [41] J. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432:602Ð605, 2004. http://hep.princeton.edu/~mcdonald/examples/QM/chiavierini_nature_432_602_04.pdf http://www.nature.com/nature/journal/v432/n7017/abs/nature03074.html superconducting circuits [42] T. Picot, A. Lupascu, S. Saito, C. J. P. M. Harmans, and J. E. Mooij. Role of relaxation in the quantum measurement of a superconducting qubit using a nonlinear oscillator. Phys. Rev. B, 78:132508, 2008. http://arxiv.org/abs/0808.0464 [43] L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature, 460:240Ð244, 2009. http://arxiv.org/abs/0903.2030 [44] T. Hime, P. A. Reichardt, B. L. T. Plourde, T. L. Robertson, C.-E. Wu, A. V. Ustinov, and John Clarke. Solid-state qubits with current-controlled coupling. Science, 314:1427Ð1429, 2006. http://www.qudev.ethz.ch/content/courses/QSIT08/pdfs/Hime06.pdf http://www.sciencemag.org/cgi/content/abstract/314/5804/1427 [45] A. O. Niskanen, K. Harrabi, F. Yoshihara, Y. Nakamura, S. Lloyd, and J. S. Tsai. Quantum coherent tunable coupling of superconducting qubits. Science, 316:723Ð726, 2007. http://www.sciencemag.org/cgi/content/abstract/sci;316/5825/723 [46] Mika A. Sillanpaa, Jae I. Park, and Raymond W. Simmonds. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature, 449:438Ð442, 2007. http://arxiv.org/abs/0709.2341 [47] J. Majer, J. M. Chow, J. M. Gambetta, Jens Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf. Coupling superconducting qubits via a cavity bus. Nature, 449:443Ð447, 2007. http://arxiv.org/abs/0709.2135 [48] R. J. Schoelkopf and S. M. Girvin. Wiring up quantum systems. Nature, 451:664Ð669, 2008. http://www.qudev.ethz.ch/content/courses/QSIT08/pdfs/Schoelkopf2008.pdf http://www.nature.com/nature/journal/v451/n7179/abs/451664a.html [49] A. Lupascu, T. Picot S. Saito and, C. J. P. M. Harmans P. C. de Groot and, and J. E. Mooij. Quantum non-demolition measurement of a superconducting two-level system. Nature Physics, 3:119Ð125, 2007. http://arxiv.org/abs/cond-mat/0611505 [50] Matthew Neeley, Markus Ansmann, Radoslaw C. Bialczak, Max Hofheinz, Erik Lucero, Aaron D. OÕConnell, Daniel Sank, Haohua Wang, James Wenner, Andrew N. Cleland, Michael R. Geller, and John M. Martinis. Emulation of a quantum spin with a superconducting phase qudit. Science, 325:722 Ð 725, 2009. http://www.sciencemag.org/cgi/content/abstract/sci;325/5941/722 [51] Matthias Steffen, M. Ansmann, Radoslaw C. Bialczak, N. Katz, Erik Lucero, R. McDermott, Matthew Neeley, E. M. Weig, A. N. Cleland, and John M. Martinis. Measurement of the entanglement of two superconducting qubits via state tomography. Science, 313:1423Ð1425, 2006. http://www.qudev.ethz.ch/content/courses/QSIT06/pdfs/Steffen06.pdf http://www.sciencemag.org/cgi/content/abstract/313/5792/1423 [52] D. Esteve. private communication, 2009. spins in semiconductors [53] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Reviews of Modern Physics, 79:1217, 2007. http://arxiv.org/abs/cond--mat/0610433 [54] M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 316:1312Ð1316, 2007. http://www.physik.uni-stuttgart.de/TR21/publications/97/science_316_1312.pdf http://www.sciencemag.org/cgi/content/abstract/sci;316/5829/1312 [55] Daniel Loss and David P. DiVincenzo. Quantum computation with quantum dots. Phys. Rev. A, 57:120Ð126, 1998. http://arxiv.org/abs/cond-mat/9701055 [56] K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen. Coherent control of a single electron spin with electric fields. Science, 318:1430Ð1433, 2007. http://arxiv.org/abs/0707.3080 [57] M. H. Mikkelsen, J. Berezovsky, L. A. Coldren N. G. Stoltz and, and D. D. Awschalom. Optically detected coherent spin dynamics of a single electron in a quantum dot. Nature Physics, 3:770Ð773, 2007. http://www.ece.ucsb.edu/Faculty/Coldren/papers/2007%20Papers/Mikkelsen%20-%20Optically%20Detected%20Coherent%20Spin%20Dynamics%20of%20a%20Single%20Electron%20in%20a%20QD-%20Nature%20Physics.pdf http://www.nature.com/nphys/journal/v3/n11/abs/nphys736.html [58] Brian D. Gerardot, Daniel Brunner, Paul A. Dalgarno, Patrik Ohberg, Stefan Seidl, Martin Kroner, Khaled Karrai, Nick G. Stoltz, Pierre M. Petroff, and Richard J. Warburton. Optical pumping of a single hole spin in a quantum dot. Nature, 451:441Ð444, 2008. http://almdudler.nano.physik.uni-muenchen.de/publikationen/2008/08-03_Gerardot_Nature.pdf http://www.nature.com/nature/journal/v451/n7177/abs/nature06472.html [59] Xiaodong Xu, Bo Sun, Paul R. Berman, Duncan G. Steel, Allan S. Bracker, Dan Gammon, and L. J. Sham. Coherent optical spectroscopy of a strongly driven quantum dot. Science, 317:929Ð932, 2007. http://www.sciencemag.org/cgi/content/abstract/sci;317/5840/929 [60] F. H. L. Koppens, C. Buizert, K. C. Nowack K. J. Tielrooij and, I. T. Vink and, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen. Driven coherent oscillations of a single electron spin in a quantum dot. Nature, 442:766Ð771, 2006. http://arxiv.org/abs/cond-mat/0608459 [61] J. Berezovsky, M. H. Mikkelsen, N. G. Stoltz, L. A. Coldren, and D. D. Awschalom. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science, 320:349Ð352, 2008. http://www.sciencemag.org/cgi/content/abstract/320/5874/349 [62] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science, 309:2180Ð2184, 2005. http://128.112.100.2/~mcdonald/examples/QM/petta_science_309_2180_05.pdf http://www.sciencemag.org/cgi/content/abstract/sci;309/5744/2180 [63] Luca Chirolli and Guido Burkard. Decoherence in solid state qubits. Advances in Physics, 57:225, 2008. http://arxiv.org/abs/0809.4716 [64] S. Amasha, K. MacLean, Iuliana P. Radu, D. M. Zumbuhl, M. A. Kastner, M. P. Hanson, and A. C. Gossard. Electrical control of spin relaxation in a quantum dot. Phys. Rev. Lett., 100:046803, 2008. http://arxiv.org/abs/0707.1656 [65] Gopalakrishnan Balasubramanian, Philipp Neumann, Daniel Twitchen, Matthew Markham, Roman Kolesov, Norikazu Mizuochi, Junichi Isoya, Jocelyn Achard, Johannes Beck, Julia Tissler, Vincent Jacques, Philip R. Hemmer, Fedor Jelezko, and Jorg Wrachtrup. Ultralong spin coherence time in isotopically engineered diamond. Nature Materials, 8:383Ð387, 2009. http://www.nature.com/nmat/journal/v8/n5/abs/nmat2420.html [66] P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup. Multipartite entanglement among single spins in diamond. Science, 320:1326Ð1329, 2008. http://www.physik.uni-stuttgart.de/TR21/publications/97/science_320_1326.pdf http://www.sciencemag.org/cgi/content/abstract/320/5881/1326 [67] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang. Experimental realization of shorÕs quantum factoring algorithm using nuclear magnetic resonance. Nature, 414:883Ð887, 2001. http://arxiv.org/abs/quant-ph/0112176 [68] C. Negrevergne, T. S. Mahesh, C. A. Ryan, M. Ditty, F. Cyr-Racine, W. Power, N. Boulant, T. Havel, D. G. Cory, and R. Laflamme. Benchmarking quantum control methods on a 12-qubit system. Phys. Rev. Lett., 96:170501, 2006. http://arxiv.org/abs/quant-ph/0603248 [69] Dieter Suter and T. S. Mahesh. Spins as qubits: Quantum information processing by nuclear magnetic resonance. J. Chem. Phys., 128:052206, 2008. http://e3.physik.uni-dortmund.de/~suter/eprints/Spins_as_Qubits.pdf http://pra.aps.org/abstract/PRA/v65/i2/e022312 [70] Andre R. Stegner, Christoph Boehme, Hans Huebl, Martin Stutzmann, Klaus Lips, and Martin S. Brandt. Electrical detection of coherent 31p spin quantum states. Nature Physics, 2:835 Ð 838, 2006. http://arxiv.org/abs/quant-ph/0607178 comparison/photons/hybrids/prospects [71] M. Grajcar, S. H. W. van der Ploeg, A. Izmalkov, E. IlÕichev, H.-G. Meyer, A. Fedorov, A. Shnirman, and Gerd Schon. Sisyphus cooling and amplification by a superconducting qubit. Nature Physics, 4:612Ð616, 2008. http://arxiv.org/abs/0708.0665 [72] F. Nori. Atomic physics with a circuit. Nature Physics, 4:589, 2008. http://dml.riken.jp/pub/nori/abs/NatPhys_4_589.pdf http://www.nature.com/nphys/journal/v4/n8/abs/nphys1044.html [73] C. Langer, R. Ozeri, J. D. Jost, J. Chiaverini, B. DeMarco, A. Ben-Kish, R. B. Blakestad, J. Britton, D. B. Hume, W. M. Itano, D. Leibfried, R. Reichle, T. Rosenband, T. Schaetz, P. O. Schmidt, and D. J. Wineland. Long-lived qubit memory using atomic ions. Phys. Rev. Lett., 95:060502, 2005. http://arxiv.org/abs/quant-ph/0504076 [74] H. J. Kimble. The quantum internet. Nature, 453:1023Ð1030, 2008. http://arxiv.org/abs/0806.4195 [75] Dirk Englund, Andrei Faraon, Ilya Fushman, Nick Stoltz, Pierre Petroff, and Jelena Vuckovic. Controlling cavity reflectivity with a single quantum dot. Nature, 450:857Ð861, 2007. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.110.9428&rep=rep1&type=pdf http://www.nature.com/nature/journal/v450/n7171/abs/nature06234.html [76] Yves Colombe, Tilo Steinmetz, Guilhem Dubois, Felix Linke, David Hunger, and Jakob Reichel. Strong atomfield coupling for boseeinstein condensates in an optical cavity on a chip. Nature, 450:272Ð276, 2007. http://arxiv.org/abs/0706.1390 [77] Joan P. Marler Peter F. Herskind and, Aurelien Dantan and, Magnus Albert, and Michael Drewsen. Realization of collective strong coupling with ion coulomb crystals in an optical cavity. Nature Physics, 5:494Ð498, 2009. http://www.nature.com/nphys/journal/v5/n7/abs/nphys1302.html [78] Jeremy L. OÕBrien. Optical quantum computing. Science, 318:1567Ð1570, 2007. http://arxiv.org/abs/0803.1554 [79] L. Tian, P. Rabl, R. Blatt, and P. Zoller. Interfacing quantum-optical and solid-state qubits. Phys. Rev. Lett., 92:247902, 2004. http://arxiv.org/abs/quant-ph/0310057 [80] L. Tian, R. Blatt, and P. Zoller. Scalable ion trap quantum computing without moving ions. Eur. Phys. J. D, 32:201Ð208, 2005. http://arxiv.org/abs/quant-ph/0412186 [81] J. Verdu, H. Zoubi, Ch. Koller, J. Majer, H. Ritsch, and J. Schmiedmayer. Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. Phys. Rev. Lett., 103:043603, 2008. http://arxiv.org/abs/0809.2552 [82] D. Petrosyan, G. Bensky, G. Kurizki, I. Mazets, J. Majer, and J. Schmiedmayer. Reversible state transfer between superconducting qubits and atomic ensembles. Phys. Rev. A, 79:040304, 2009. http://arxiv.org/abs/0902.0881 [83] David P. DiVincenzo. Quantum computation. Science, 270:255Ð261, 1995. http://www.lanais.famaf.unc.edu.ar/cursos/quantumcomp/lectures/DiVincenzo-QC-science.pdf http://www.sciencemag.org/cgi/content/abstract/270/5234/255