
Almost All Quantum Oracles
Are Impossible to Realize in Practice(V.2)

Robert R. Tucci
P.O. Box 226

Bedford, MA 01730
tucci@ar-tiste.com

February 15, 2009

Abstract

In this blog post, I give an introduction to quantum oracles from a quantum computer
programmer’s perspective. This being a blog post, I’ve tried to be as introductory
and pedagogical as possible.

1

1 Introduction

In this blog post, I give an introduction to quantum oracles from a quantum computer
programmer’s perspective. This being a blog post, I’ve tried to be as introductory
and pedagogical as possible. A quantum oracle is typically a unitary operator that
takes |0〉|x〉 to |f(x)〉|x〉 for some function f : {0, 1}NB → {0, 1}, where NB is the
number of bits. Many quantum algorithms call a quantum oracle one or more times.

Among other things, I will prove in this blog post that for almost all functions
f , the corresponding quantum oracle has exponential(NB) time complexity. Oracles
are often compared to subroutines called by a larger computer program. If a computer
program calls a subroutine that takes forever to run, the full computer program takes
forever to run too, making it impossible to realize in practice. In the past, I’ve
been often perplexed by papers that use quantum oracles without worrying about
their time-complexity. This made me want to write a blog post about the subject of
quantum oracles.

If a unitary operator is expressed as a Sequence of Elementary Operations
(SEO) (by elementary operations we mean single-qubit rotations and CNOTs), then
the number of CNOTs can be used as a measure of the time complexity of the oper-
ator. (Being two-body interactions, CNOTs take much longer to perform physically
than single-qubit rotations, so we only count the former.) This is how we will mea-
sure the time-complexity of a unitary operator in this paper. If an operator can be
expressed as a SEO with polynomial(NB) many CNOTs, it will be said to have poly-
nomial complexity. If exponential(NB) many CNOTs are required to express it, it
will be said to have exponential complexity.

2 Notation and Preliminaries

In this section, we will define some notation that is used throughout this paper.
We will often use the symbol NB for the number (≥ 1) of qubits and NS = 2NB

for the number of states with NB qubits. The quantum computing literature often
uses n for NB and N for NS, but we will avoid this notation. We prefer to use n for
the number operator, defined below.

Let Bool = {0, 1}. As usual, let Z,R,C represent the set of integers (negative
and non-negative), real numbers, and complex numbers, respectively. For integers a,
b such that a ≤ b, let Za,b = {a, a + 1, . . . b− 1, b}.

We will use Θ(S) to represent the “truth function”; Θ(S) equals 1 if statement
S is true and 0 if S is false. For example, the Kronecker delta function is defined by
δy
x = δ(x, y) = Θ(x = y).

Let 0 = 1 and 1 = 0. If ~a = aNB−1 . . . a2a1a0, where aµ ∈ Bool, then dec(~a) =∑NB−1
µ=0 2µaµ = a. Conversely, ~a = bin(a).

We define the single-qubit states |0〉 and |1〉 by

2

|0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
. (1)

If ~a ∈ BoolNB , we define the NB-qubit state |~a〉 as the following tensor product

|~a〉 = |aNB−1〉 ⊗ . . . |a1〉 ⊗ |a0〉 . (2)

For example,

|01〉 =

[
1
0

]
⊗

[
0
1

]
=

0
1
0
0

 . (3)

Ik will represent the k × k unit matrix.
Suppose β ∈ Z0,NB−1 and M is any 2× 2 matrix. We define M(β) by

M(β) = I2 ⊗ · · · ⊗ I2 ⊗M ⊗ I2 ⊗ · · · ⊗ I2 , (4)

where the matrix M on the right hand side is located at qubit position β in the tensor
product of NB 2× 2 matrices. The numbers that label qubit positions in the tensor
product increase from right to left (←), and the rightmost qubit is taken to be at
position 0.

The Pauli matrices are

σX =

[
0 1
1 0

]
, σY =

[
0 −i
i 0

]
, σZ =

[
1 0
0 −1

]
. (5)

The one-qubit Hadamard matrix H is defined as:

H =
1√
2

[
1 1
1 −1

]
. (6)

The number operator n for a single qubit is defined by

n =

[
0 0
0 1

]
=

1− σZ

2
. (7)

Note that

n|0〉 = 0|0〉 = 0 , n|1〉 = 1|1〉 . (8)

We will often use n as shorthand for

n = 1− n =

[
1 0
0 0

]
=

1 + σZ

2
. (9)

Define P0 and P1 by

3

P0 = n =

[
1 0
0 0

]
= |0〉〈0| , P1 = n =

[
0 0
0 1

]
= |1〉〈1| . (10)

P0 and P1 are orthogonal projection operators and they add to one:

PaPb = δ(a, b)Pb for a, b ∈ Bool , (11)

P0 + P1 = I2 . (12)

For ~a ∈ BoolNB , let

P~a = PaNB−1
⊗ · · · ⊗ Pa2 ⊗ Pa1 ⊗ Pa0 . (13)

For example, with 2 qubits we have

P00 = P0 ⊗ P0 = diag(1, 0, 0, 0) , (14)

P01 = P0 ⊗ P1 = diag(0, 1, 0, 0) , (15)

P10 = P1 ⊗ P0 = diag(0, 0, 1, 0) , (16)

P11 = P1 ⊗ P1 = diag(0, 0, 0, 1) . (17)

Note that

P~aP~b = δ(~a,~b)P~b for ~a,~b ∈ BoolNB , (18)

∑

~a∈BoolNB

P~a = I2 ⊗ I2 ⊗ · · · ⊗ I2 = I2NB . (19)

Let P· =
∑

a∈Bool Pa = I2. More generally, for ~b ∈ BoolNB , if one or more of
the binary indices of P~b is replaced by a dot, this will signify that those indices are
summed over. For example, P0·1· =

∑
a,b∈Bool P0a1b. Henceforth, we will denote the

set {0, 1, ·} by BoolDot and use Latin letters for elements of Bool and Greek letters
for elements of BoolDot. Note that P0P· = P0 and P·P· = P.. More generally, if
µ, ν ∈ BoolDot, then

PµPν = Pµδ
ν
µ + (1− δν

µ)(δ·µPν + δ·νPµ) . (20)

A special case of the last equation is

PaPν = (δν
a + δν

·)Pa (21)

for a ∈ Bool and ν ∈ BoolDot.

4

Next we explain our circuit diagram notation. We label single qubits (or qubit
positions) by a Greek letter or by an integer. When we use integers, the topmost qubit
wire is 0, the next one down is 1, then 2, etc. Note that in our circuit diagrams, time
flows from the right to the left of the diagram. Careful: Many workers in Quantum
Computing draw their diagrams so that time flows from left to right. We eschew
their convention because it forces one to reverse the order of the operators every time
one wishes to convert between a circuit diagram and its algebraic equivalent in Dirac
notation.

Suppose U ∈ U(2). If τ and κ are two different qubit positions, gate U(τ)n(κ)

(or U(τ)n(κ)) is called a controlled U with target τ and control κ. When U = σX ,
this reduces to a CNOT (controlled NOT). If τ ,κ1 and κ0 are 3 different qubit
positions, σX(τ)n(κ1)n(κ0) is called a Toffoli gate with target τ and controls κ1, κ0.

Suppose NK ≥ 2 is an integer and ~b ∈ BoolNK . Suppose τ, κNK−1, κNK−2, . . . , κ1, κ0

are distinct qubits and ~κ = (κNK−1, κNK−2, . . . , κ1, κ0). Gate U(τ)P~b
(~κ) is called a

multiply controlled U with target τ and NK controls ~κ. When U = σX , this
reduces to an MCNOT (multiply controlled NOT).

3 Standard Oracles

In this section, we define and discuss standard quantum oracles.
Consider a function f : BoolNB → Bool. Let τ, β0, β1, . . . , βNβ−1 denote NB +1

distinct qubit positions. Let~b = (bNβ−1, . . . , b1, b0) ∈ BoolNB , ~β = (βNβ−1, . . . , β1, β0),

and P~b(
~β) =

∏Nβ−1
j=0 Pbj

(βj). We define a standard quantum oracle Ω with target

qubit τ and NB control qubits ~β by

Ω = σX(τ)
∑

~b
f(~b)P~b

(~β) (22a)

=
∏

~b

σX(τ)f(~b)P~b
(~β) (22b)

=
∑

~b

P~b(
~β) σX(τ)f(~b) . (22c)

We’ve expressed Ω in 3 equivalent forms, the exponential, product and sum forms.
The equivalence of these forms is readily established by applying |~b〉~β to the right

hand side of each form. Note that we can “pull” the ~b sum out of the exponential,
but only if we also pull out the projector P~b.

Note that for t ∈ Bool and ~b ∈ BoolNB ,

Ω|t〉τ |~b〉~β = σX(τ)f(~b)|t〉τ |~b〉~β = |t⊕ f(~b)〉τ |~b〉~β , (23)

where ⊕ denotes mod 2 summation. The property Eq.(23) of Ω is often utilized in

5

quantum algorithms, when Ω is used to “load input data into a register”: Ω|0〉τ |~b〉~β =

|f(~b)〉τ |~b〉~β. From Eq.(23), it follows that the matrix elements of Ω are

Ω(t′,~b′|t,~b) = 〈t′|τ 〈~b′|~β Ω |t〉τ |~b〉~β = δt′
t⊕f(~b)

δ
~b′
~b

. (24)

Thus, Ω can be represented as the following matrix

Ω =

t = 0 t = 1
~b ~b

t′ = 0
~b′ ∆ ∆
t′ = 1
~b′ ∆ ∆

, (25)

where ∆ is a diagonal matrix whose diagonal entries are either 0 or 1 and where
∆ = 1−∆.

Another common quantum oracle is Ω′ defined by

Ω′ = (−1)
∑

~b
f(~b)P~b

(~β) . (26)

The oracle in the original Grover’s algorithm is simply Ω′ with f(~b) = δ(~b,~b0), where
~b0 is the so called target state. Ω′ can be easily expressed in terms of Ω by introducing
an ancilla target qubit τ :

Ω′(~β)|0〉τ = σX(τ)σZ(τ)
∑

~b
f(~b)P~b

(~β)σX(τ)|0〉τ (27a)

= σX(τ)H(τ)
[
σX(τ)

∑
~b

f(~b)P~b
(~β)

]
H(τ)σX(τ)|0〉τ . (27b)

Another common quantum oracle is Ω′′ defined by

Ω′′ = [eigσX(α)]
∑

~b
f(~b)P~b

(~β) (28a)

=
~β GF ED@A BC∑

~b f(~b)P~b

α eigσX

, (28b)

where g ∈ R and α, ~β = (βNB−1, . . . , β1, β0) are distinct qubits. Ω′′ can be easily
expressed in terms of two Ω’s by introducing an ancilla target qubit τ :

Ω′′(~β, α)|0〉τ =
[
σX(τ)

∑
~b

f(~b)P~b
(~β)

]
eigσX(α)n(τ)

[
σX(τ)

∑
~b

f(~b)P~b
(~β)

]
|0〉τ (29a)

=

~β GF ED@A BC∑
~b f(~b)P~b

GF ED@A BC∑
~b f(~b)P~b

τ × • × |0〉τ
α eigσX

. (29b)

6

Note that the initial α and ~β qubit “worldlines” carry “exotic” operators like eigσX(α)

and
∑

~b f(~b)P~b(
~β), whereas the auxiliary τ worldline carries only “non-exotic” oper-

ators like σX(τ) and n(τ). The reason we need two Ω’s to represent Ω′′ is that the
second Ω reverses the change made by the first to the auxiliary τ qubit.

4 Inherited Oracles

In this section we introduce a class of quantum oracles inherited from classical re-
versible computing.

For any function f : BoolNB → Bool, we can define a matrix T (t|~b) = δt
f(~b)

where t ∈ Bool and ~b ∈ BoolNB . In classical reversible computing, the matrix T (t|~b)
is extended to an operator T (t,~b−|t−,~b) ∈ Bool that is reversible (T T T = 1) and
that satisfies

∑

~b−

T (t,~b−|t− = 0,~b) = δt
f(~b)

, (30)

where ~b,~b− ∈ BoolNB and t, t− ∈ Bool. (Think of T (t|~b) and T (t,~b−|t−,~b) as condi-

tional probabilities.) t− is called a source index and ~b− a sink index. Collectively, t−
and ~b− are called ancilla indices.

Now note that by virtue of Eq.(24), Eq.(30) is satisfied if we set

T (t,~b−|t−,~b) = |Ω(t,~b−|t−,~b)|2 = Ω(t,~b−|t−,~b) . (31)

(Think of Ω(t,~b−|t−,~b) as a probability amplitude). There are many possible ways
of extending T to T , and the standard oracle is one of them. In general, any circuit
used in classical reversible computing can be transformed to the standard oracle
canonical form, and used immediately as a quantum oracle component of a quantum
circuit. Thus, for any f : BoolNB → Bool, if an algorithm of polynomial complexity
for calculating f(~b) is known, then we can always construct from this algorithm

a quantum oracle of polynomial complexity. For example, if f(~b) is a polynomial

function, it has an exact quantum oracle of polynomial complexity. If f(~b) is well
approximated by a polynomial function, then it has an approximate quantum oracle
of polynomial complexity.

5 Banded Oracles

In this section we introduce a special class of quantum oracles that I like to call
“banded oracles”.1 Such oracles can be expressed as a SEO with polynomial(NB)

1Banded oracles have been implemented in the Java application QuanOracle, written by the
author of this paper. Ref.[1] describes how to operate QuanOracle. QuanOracle is a member of

7

many CNOTs.
For ~b ∈ BoolNB , if j = dec(~b), let Pj = P~b. For some integer j ≥ 0, define a

single band of P ’s, from 0 to j, by

P[0,j] =

j∑

k=0

Pk . (32)

We can use the identity P0 +P1 = P· to reduce the number of projection operators on
the right hand side of Eq.(32). For example, for 10 = dec(1010) and 11 = dec(1011),

P[0,1010] = P0··· + P100· + P1010 , (33)

and

P[0,1011] = P0··· + P100· + P101· . (34)

The right hand sides of Eqs.(33) and (34) are readily apparent if you think of the way
one counts in binary.

Next, for some integers j1, j2 such that 0 ≤ j1 ≤ j2, define a single band of
P ’s, from j1 to j2, by

P[j1,j2] = P[0,j1−1] + P[0,j2] . (35)

Addition on the right hand side of Eq.(35) is taken to be mod 2 so P0 + P0 =
P1 + P1 = 0 can be used to cancel overlapping P ’s. For example, for 11 = dec(1011)
and 14 = dec(1110),

P[1011,1110] = (P0··· + P100· + P1110) + (P0··· + P10·· + P110· + P1110) . (36)

In the right hand side of Eq.(36), the two P0··· cancel.
The above definition of a single band of P ’s can be generalized in the obvious

way to define multiple non-overlapping bands of P ’s.
When the exponent

∑
~b f(~b)P~b(

~β) of Ω equals a sum of multiple non-overlapping
bands of P ’s, then we get what I call a banded oracle. The number of bands must
be independent of NB (or be ≤ polynomial(NB)). Clearly, a banded oracle can be
expressed as a product of m MCNOTs, where m is ≤ polynomial(NB). Each of
these MCNOTs has NB or fewer controls, so it can be expressed as a SEO with
polynomial(NB) many CNOTs. Thus, the oracle itself can be expressed as a SEO
with polynomial(NB) many CNOTs.

a suite of Java applications called QuanSuite. The QuanSuite applications and source code are
available for free at www.ar-tiste.com.

8

6 Impossible Oracles

In the previous section we stipulated that the exponent
∑

~b f(~b)P~b(
~β) for banded

oracles be expressible as sum of m P ’s, where m is ≤ polynomial(NB). One wonders
if this is also the case for any standard oracle. The answer is a resounding no. As we
show next, the vast majority of standard oracles require exponential(NB) many P ’s
in their exponent.

Let ~b ∈ BoolNB and f~b = f(~b) ∈ Bool. Suppose N is a positive integer.

For each k ∈ Z0,N , let c(k) ∈ Bool and ~α(k) = (α
(k)
NB−1, . . . , α

(k)
1 , α

(k)
0) ∈ BoolDotNB .

Suppose we have found an N , and for each k ∈ Z1,N , a pair (c(k), ~α(k)), such that

∑

~b

f~bP~b =
N∑

k=1

c(k)P~α(k) . (37)

Applying Eq.(21) to Eq.(37) yields

f~b =
N∑

k=1

c(k)

NB−1∏
j=0

{δα
(k)
j

bj
+ δ

α
(k)
j· } for each ~b ∈ BoolNB . (38)

Eqs.(38) define a function Φ such that

Φ(c(k), ~α(k))∀k∈Z1,N
= (f~b)∀~b∈BoolNB . (39)

For example, for NB = 3 and N = 2, one has

∑

~b∈Bool3

f~bP~b = c(1)P
α

(1)
2 α

(1)
1 α

(1)
0

+ c(2)P
α

(2)
2 α

(2)
1 α

(2)
0

, (40)

f000 =
∑2

k=1 c(k)(δ
α

(k)
2

0 + δ
α

(k)
2·)(δ

α
(k)
1

0 + δ
α

(k)
1·)(δ

α
(k)
0

0 + δ
α

(k)
0·)

f001 =
∑2

k=1 c(k)(δ
α

(k)
2

0 + δ
α

(k)
2·)(δ

α
(k)
1

0 + δ
α

(k)
1·)(δ

α
(k)
0

1 + δ
α

(k)
0·)

...

f111 =
∑2

k=1 c(k)(δ
α

(k)
2

1 + δ
α

(k)
2·)(δ

α
(k)
1

1 + δ
α

(k)
1·)(δ

α
(k)
0

1 + δ
α

(k)
0·)

(41)

and

Φ(c(k), α
(k)
2 , α

(k)
1 , α

(k)
0)∀k∈Z1,2 = (f000, f001, . . . , f111) . (42)

In general,

Φ : (Bool ×BoolNB)N → Bool2
NB , (43)

where Φ is not necessarily a surjection (onto). The range of Φ can be identified
with the set of all possible functions f : BoolNB → Bool. The size of Φ’s domain is
2(NB+1)N , whereas the size of its range is 22NB . For large NB, if N is polynomial(NB),

9

then the image of Φ only covers a vanishingly small fraction of the range of Φ. Thus,
almost all quantum oracles require exponential(NB) many P ’s in their exponent.
This means that for large NB, almost all quantum oracles are impossible to realize in
practice.

7 Acknowledgements

In updating from version 1 to version 2, I profitted greatly from blog comments by
Scott Aaronson.

References

[1] R.R.Tucci, “QuanFou, QuanGlue, QuanOracle and QuanShi, Four Special Pur-
pose Quantum Compilers”, arXiv:0802.2367

10

