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1 Introduction

In this blog post, I will give a very brief introduction to Renormalization Group (RG)
theory.

This blog is about quantum computing and more generally about quantum
information science (QIS). So why should a person working in QIS be interested
in RG theory? One reason is that RG theory describes how correlation functions
scale, and correlation functions are crucial in: (1)the study of quantum entanglement
(2)both classical and quantum Shannon information theory.

Physicists like to study how a theory transforms under a family of operations.
Such families of operations usually constitute a mathematical group. The operations
might be discrete, as with PTC (P=parity, T=time reversal, C=charge conjugation)
or continuous (continuous transformations are a type of generalized rotation). In the
case of the renormalization group, physicists consider how a theory transforms under
an operation that “scales” the unit of length.

It’s useful (at least to me) to think of such scaling as a type of lossy data-
compression or smoothing. Accordingly, RG theory can be viewed as a meta-theory
that describes how theories change under lossy data-compression. Hence, a more
precise but less catchy title for this blog post would have been “Honey, I applied
lossy data-compression to the theory (and the kids).”

2 Books and other references on RG

Achtung! There is a huge amount of literature on RG theory, and I’m only familiar
with a tiny amount of it, so don’t trust too much my advice in this section.

My favorite beginner’s book on RG theory is Ref.[1] by McComb. I like this
book a lot, although I think many aspects of it could be improved (including fixing
all the typos). This book assumes very little prior knowledge, and is very intuitive.
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Another book that I consult occasionally is Ref.[2] by Goldenfeld. It’s a little
more advanced than the book by McComb and covers some topics not covered by
McComb.

Last but not least, I recommend Ref.[3] by Srednicki, an excellent, very com-
prehensive book about quantum field theory from a high energy physics perspective.
This book discusses many topics besides the RG, but it includes a nice explanation
of Feynman diagrams, renormalization and RG, all from a high energy physics point
of view.

Taste in physics books is very subjective so I advise you to inspect the books
I’ve recommend and many others besides. Then form your own opinions.

Besides books, the reference section at the end of this article also lists a few
relevant Wikipedia articles that I found interesting.

3 RG theory- a big tent

RG theory is truly a big tent. It has been applied in a wide variety of scientific areas.
Here is a partial list of some of those areas. Doubtlessly, I’ve failed to list some areas,
and new areas will arise in the future.

• classical Shannon information theory

• quantum information science, quantum Shannon information theory, study of
quantum entanglement. Density Matrix Renormalization Group (DMRG).

• fluid mechanics (turbulence)

• chaos and fractal theory

• differential equations

• statistical mechanics (phase transitions)

• probability and statistics

• quantum field theory, both relativistic (used in high energy physics) and non-
relativistic (used in condensed matter physics)

• (as IBM’s Watson would say, ???) computational complexity and algorithms
theory, how the number of steps in an algorithm depends on the number of
input bits n.
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4 What is renormalization?

The subject of renormalization methods includes the following topics:

• regularization: defining a divergent integral as the limit of a finite integral. The
parameter than one takes the limit of is called the regulator of the integral.

• renormalization: a process of possibly adding a finite number of new interac-
tions to a field theory and dividing certain parameters of the field theory by
normalization constants so as to make the field theory finite. These normaliza-
tion constants are parameterized by a regulator and diverge as that regulator
tends to a certain value.

• RG theory: a meta-theory about how a field theory transforms under scale
transformations.

• perturbation expansion of a field theory

This article will concentrate on the topic of RG theory, but all these topics are closely
related.

Let “dofs” stand for degrees of freedom.
Note that the word “scaling” is used in a very special way in RG theory.

Scaling in RG theory = lossy data-compression that reduces the number of dofs of a
field theory. Some synonyms for “scaling” in RG theory: data-compressing, screening,
dressing a bare coupling constant, pruning, decimating, averaging, coarse graining,
smoothing, forgetting initial conditions, integrating out ultraviolet dofs, zooming out,
shrinking. Some antonyms: zooming in, magnifying, expanding, dilating.

Lossy data-compression is associated with the phenomenon of screening, whereby
a charged particle polarizes its surrounding medium so that the charge perceived by
an observer (called the effective charge) decreases as the observer moves away from
the particle.

5 A whiff of thermodynamics

RG theory is intimately linked to thermodynamics, and thermodynamics is a world in
itself. Here is but a whiff of thermodynamics. The partition function Z is defined
by

Z = tr(e−βH) =
∑

j

e−βEj , (1)

where H > 0 is the Hamiltonian matrix of the system, and {Ej}j are the eigenvalues
of H. The free energy F is defined in terms of Z by

−βF = ln Z , (2)
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where β = 1
kBT

, kB is Boltzmann’s constant, and T is the temperature of the system.
All the thermodynamic observables can be expressed in terms of F and it’s derivatives
with respect to β. McComb calls Eq.(2) the “bridge equation”, because it bridges the
microscopic physics with the macroscopic one. Nice name! One could write volumes
about F alone. However, since this is just a brief article, let’s just point out the
interesting fact that at low temperatures (i.e., high β), F ≈ E1, where E1 is the
lowest (i.e., ground state) energy of the system.

6 An essence of field theory

In RG theory, one considers a “field” (for instance, a scalar field φ(x) ∈ R assigned to
each point x ∈ Rd, or a spin field Si ∈ {−1, 1} assigned to each point i of a discrete
lattice embedded in Rd).

Let d be the number of dimensions of the space that labels the field being
considered. For instance, d = 3 when the field being considered varies over 3 spatial
directions but is stationary (i.e., does not depend on time). In relativistic quantum
field theory, one is interested in d = 4 because a different field value is attached to
each “event” (i.e. space-time point).

As is customary in the RG theory literature, we will use ε to denote

ε = 4− d . (3)

(Mnemonic: note that the above equation doesn’t change if you interchange ε and d.
The equation ε = d− 4 (not used here) is not invariant under the same interchange.)

On a cubic lattice, the separation in the x (or y or z) direction between two
neighboring lattice points is called the lattice constant and will be denoted by a.

Field theories are described by a Hamiltonian. In RG theory, one often consid-
ers the Ising Hamiltonian and variants thereof. The Ising Hamiltonian in d dimensions
is defined by

H = −J
∑

(i,j)∈ nn

SiSj −B
∑

i∈ lp

Si , (4)

where

lp = a set of lattice points in a hyper-cubic lattice embedded in Rd,
nn = {(i, j) ∈ lp : i and j are nearest neighbors}, (5)

Si ∈ {−1, 1} for all i ∈ lp. Si represents the spin at lattice point i, J is the spin-spin
coupling, and B is an external magnetic field interacting with the spins. One often
defines generalized coupling constants Kj by K1 = βJ , K2 = βB.

4



Continuous instead of discrete field theories are also frequently considered in
RG theory. For example, the Hamiltonian for the φ4 theory with mass m and coupling
constant λ is given by1

H =

∫
ddx

{
1

2

d∑
j=1

(∂jφ)2 +
1

2
m2φ2 +

λ

4!
φ4

}
. (6)

One can define generalized coupling constants here too: let K1 = m2 and K2 = λ.
A beautiful aspect of RG theory is that it applies to any field theory, be it

continuous or discrete, relativistic (as considered in high energy physics) or non-
relativistic (as considered in condensed matter physics).

7 Naive versus fractal “scaling” dimensions

Let the real number b ≥ 1 denote the spatial compression (i.e., spatial scaling)
factor. Upon compression, the distance δx between any two spatial positions shrinks
to δx′ = δx

b
.

In high energy physics, it is customary to use an energy scaling factor
be = 1/b. It is useful to be fluent in both b and be languages. Since 1 ≤ b < ∞, it
follows that 0 < be ≤ 1. As b goes from 1 to ∞, be goes from 1 to 0. b and be are
both 1 at the same time. They both start at 1, but one goes up and the other down.
The point b = be = 1 corresponds to the microscopic, ultraviolet theory, whereas the
point b = ∞, be = 0 corresponds to the macroscopic, infrared theory. Note also that
ln be = − ln b so that as ln b goes from 0 to ∞, ln be goes from 0 to −∞.

If one uses Planck units in which ~ = c = 1, then time and length have
dimensions of L, whereas energy, mass, and momentum have dimensions of 1/L. For
a length x and an energy E, one has

x′ =
x

b
= xbe , (7)

E ′ = bE =
E

be

. (8)

A physical quantity q can be assigned both a naive dimension Dq given by
dimensional analysis, and an anomalous or fractal dimension yq. This is expressed
with the following notation:

[q] = LDq , (9)

and2

1In equation Eq.(6), φ,m, λ represent the bare quantities, often denoted by φ0, m0, λ0.
2Our definition Eq.(10) of fractal dimension yq is the standard definition of fractal dimension,

namely log of number of self similar pieces divided by log of magnification. See Ref.[5]
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q′ = byqq . (10)

For example, given 3 quantities qj for j = 1, 2, 3, then

[
q1

q2q3

]
= LD1−D2−D3 , (11)

and

q′1
q′2q

′
3

= by1−y2−y3
q1

q2q3

. (12)

Note that a length x has Dx = 1 and yx = −1. In some cases, it makes sense to
set yq = −Dq for all quantities q. However, in other cases, one cannot set Dq = −yq

for all quantities q. The cases where one can (ditto, cannot) set Dq = −yq for all q
are associated with lossless (ditto, lossy) data-compression. We try to explain why
this is so in Section 9.

8 Real and momentum space RG

Let φx ∈ R be the value of a field at position x ∈ Rd. For each x, φx is a dof of the
theory. One can also consider a conjugate dof φp which is the Fourier transform of
φx. Only φp for momenta p in the ball {p : |p| < Λ} are allowed. Λ, the maximum
momentum magnitude allowed, is called the cutoff momentum.

In real space RG applied to a cubic lattice with lattice constant a, we map
a d-dimensional block with sides of length ba into a block with sides of length a. In
so doing, we are data-compressing the information assigned to (ba)d lattice points
into the information assigned to a single lattice point. (The information assigned to
a lattice point is the value of φx or other field attached to that lattice point.)

In momentum space RG, we data-compress by mapping the information
in {φp : |p| < Λ} into the information in {φp : |p| < Λ/b}. This process is often
described by saying that we are integrating the ultraviolet dofs of the theory.

So what do real and momentum space RG have in common? In both real and
momentum space RG, we reduce the number of dofs of the theory being considered
from Ndofs to N ′

dofs, where

b =
Ndofs

N ′
dofs

. (13)

9 Correlations rule the world

As before, let φx ∈ R be the value of a field at position x ∈ Rd. φx is taken to be
a random variable. How the average 〈φx1φx2〉 decays with distance r = |x1 − x2| is
characterized by a decay length ξ called the correlation length of φx.
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Lossless (ditto, lossy) data-compression of the theory is associated with zero
(ditto, non-zero) ξ. The intuition for this fact is that a field with ξ = 0 is composed
of probabilistically independent dofs φx, and therefore pruning those dofs causes no
loss of information.

As mentioned before, in the case of lossless (ditto, lossy) data-compression,
one can (ditto, cannot) set the naive and fractal dimensions equal (up to a sign) for
every physical quantity (i.e., yq = −Dq for all q).

One can prove that there is a number duc called the upper critical dimen-
sion, such that ξ = 0 if d ≥ duc. For instance, for a φ4 theory, duc = 4. For
d ≥ duc, one can “neglect the thermal fluctuations”, set ξ = 0, assume lossless data-
compression, and set yq = −Dq for all q. The Landau and mean field models describe
this lossless regime.

10 Renormalization (semi-)group

Let b, b1, b2, b3 ≥ 1. If Rb denotes data-compression with compression factor b of a
theory, then clearly

Rb1b2 = Rb1Rb2 . (14)

Note that R1Rb = Rb (identity property), and Rb1(Rb2Rb3) = (Rb1Rb2)Rb3 (associative
property). However, one cannot set R1/bRb = R1 (inverse property) because 1/b
is not greater than 1. Physically, the reason RG operations don’t have inverses is
that they represent lossy data-compression, and therefore are irreversible. So the
set of transformation {Rb : b ≥ 1} is not a true mathematical group. In truth, it
only satisfies the properties of a weaker algebraic structure called a semi-group.3.
Physicists, however, call it a group anyway.

11 RG streamlines

A theory is described by a Hamiltonian H. Each interaction term in the Hamiltonian
is multiplied by a different generalized c.c. (coupling constant) Kj which mea-

sures the strength of that interaction term. Let ~K = (K1, K2, . . . KNc.c.). Applying
Rb once gives

H ′ = RbH, ~K ′ = Rb
~K . (15)

Applying Rb multiple times gives

H(n+1) = RbH
(n), ~K(n+1) = Rb

~K(n) , (16)

3However, if the theory is scale invariant as happens when it sits at a critical point, then one can
consider all b > 0, not just b ≥ 1, and the set {Rb : b > 0} is a true group.
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H(n) = Rn
b H(0), ~K(n) = Rn

b
~K(0) , (17)

for n = 0, 1, 2, . . .. The sequence ~K(0), ~K(1), ~K(2), . . . describes a one-dimensional
curve (a streamline, a flow) in c.c. space. A different curve is traced for each initial

condition ~K(0). The streamlines flow from b = 1 to b = ∞ (or, in be language, from
be = 1 to be = 0).

12 Fixed points of the trivial and critical kind

If, as n tends to infinity,
~K(n) → ~K∗ , (18)

we say ~K∗ is a fixed point in the c.c.’s. Other functions of ~K like the Hamiltonian
H( ~K) and the correlation length ξ( ~K) also tend to a fixed point

H( ~K∗) = H∗, ξ( ~K∗) = ξ∗ . (19)

Note that the correlation length ξ transforms as

ξ′ =
ξ

b
, ξ(n) =

ξ(0)

bn
. (20)

Therefore, for large n,

ξ∗ =
ξ∗

bn
. (21)

Eq.(21) has two possible solutions. Either ξ∗ = 0, in which case we say the fixed

point ~K∗ is trivial, or ξ∗ = ∞, in which case we say the fixed point is critical.
Trivial fixed points are not very interesting. Since they have ξ∗ = 0, they

can be understood in terms of lossless data-compression and naive dimensions for the
c.c.’s.

Critical points are much more interesting. Since they have ξ∗ = ∞, they
can be understood in terms of lossy data-compression and fractal dimensions for the
c.c.’s.

Two examples of critical points that occur in nature are the Curie tempera-
ture of an Ising system (the temperature at which the magnetization of the system
goes from zero to growing, spontaneously, at zero externally applied magnetic field).
Another showcase critical point is the critical point of water (a unique point in the
PVT phase diagram of water, a point at which gaseous and liquid water coexist).
The temperature at which a critical point occurs is called its critical temperature
and is denoted by Tc. Critical points are also sometimes called second order phase
transitions.
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13 Critical exponents and universality classes

How various thermodynamic quantities behave near and precisely at a critical point
is described by a slew of critical exponents. It is common to define 6 critical
exponents α, β, γ, δ, ν, η (all defined so as to be non-negative) defined on page 150 of
McComb. One can use very general thermodynamic arguments to prove that these
6 exponents must satisfy 4 simple relationships between them. Thus, one need only
calculate 2 of 6. The 2 that are usually calculated are ν and η.

ν and η can both be inferred from the behavior of Greens’s functions. Let φx

be the value of a field at point x. Let 〈Q〉 denote the average of a quantity Q. We
will use the following shorthand notations

r = |x1 − x2|, ∆φx = φx − 〈φx〉, θc =
∆T

Tc

=
T − Tc

Tc

. (22)

We define the Greens’s function G(r) by

G(r) = 〈φx1φx2〉 , (23)

and the connected Greens’s function Gc(r) by

Gc(r) = 〈∆φx1 ∆φx2〉 = 〈φx1φx2〉 − 〈φx1〉〈φx2〉 = 〈φx1 , φx2〉 . (24)

The behavior of Gc(r) near but not precisely at a critical point is of an exponential
form, with decay constant give by the correlation length ξ. The dependance of ξ on
temperature determines the critical exponent ν:

Gc(r) ∼ exp(−r/ξ), ξ = |θc|−ν . (25)

(Note that for ν > 0, ξ → ∞ as T → Tc.) The behavior of Gc(r) precisely at a
critical point is an inverse power law, and the power of the law determines the critical
exponent η:

Gc(r) ∼ 1/rpow, pow = d− 2 + η . (26)

(Let d = 4. If η = 0, this gives an inverse square law. If η > 0, Gc(r) decays faster
than when η = 0, as one expects if there is screening.)

For all field theories, all critical points with the same critical exponents are
said to be in the same universality class. For example, the φ4 theory has a single
trivial fixed point for d ≥ 4, but for d ≤ 4, it has a single critical fixed point, called
the Wilson-Fisher point, which has the same critical exponents as the critical point
of the Ising model in d dimensions.

Universality classes are few and far between because theories are scale invariant
at a critical point, and scale invariant theories are few and far between.
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14 Relevant, marginal and irrelevant operators

It is interesting to analyze the behavior of a field theory in the vicinity of a critical
point. To do this, it is convenient to replace the generalized c.c.’s ~K = (K1, K2, . . . , KNc.c.)
by natural c.c.’s ~g = (g1, g2, . . . , gNc.c.). The natural c.c.’s are natural coordinates
for describing the particular critical point being considered. They have the critical
point as their origin (i.e., ~g∗ = 0).

The set of all points that flow into the critical point (i.e., the “basin of at-
traction” of the critical point) is called the critical surface. As a consequence of
Eq.(20), all points in the critical surface have infinite correlation length ξ, just like
the critical point itself (in a manner of speaking, they get infected by the critical
point).

Note that
g′j = byjgj, g

(n+1)
j = bnyjg

(0)
j (27)

for all j. Since b ≥ 1, there are three possible scenarios for each gj:

• yj > 1: In this case g
(n)
j →∞ as n →∞. We say gj is a relevant c.c..

• yj < 1: In this case g
(n)
j → 0 as n →∞. We say gj is an irrelevant c.c..

• yj = 1: In this case g
(n)
j tends to a constant as n →∞. We say gj is a marginal

c.c..

If an interaction term in the Hamiltonian is multiplied by a relevant c.c., we call that
interaction term a relevant operator, and likewise for irrelevant and marginal.

Fig.1 shows the typical behavior of the RG streamlines in the vicinity of a
critical point, assuming Nc.c. = 2. In Fig.1, point C is the critical point. The K1, K2

axes are for the generalized c.c.’s and the g1, g2 axes are for the natural c.c.’s. The
arrows on the streamlines point in the direction of increasing b (i.e., decreasing be). In
the case of Fig.1, the critical surface is a one dimensional curve, the one that contains
points S, C and S ′. No streamlines ever cross the critical surface. They stay for all
b either above or below the critical surface.

If the initial conditions are such that the theory starts somewhere on the
critical surface, then for b large enough, the theory ends at point C where g1 = g2 = 0.
On the other hand, if the theory starts at a point such as A which is close to the
critical surface but not on it, then the irrelevant c.c. g1 (ditto, relevant c.c. g2) shrinks
(ditto, grows) monotonically as b grows. By the time the theory reaches, say, point
B, g1 is negligible, and g2 is starting to become uncomfortably large for expanding
in powers of it. A good place to do perturbation theory is in the vicinity of point P ,
where the irrelevant c.c. g1 is negligible, and the relevant c.c g2 is much smaller than
1, but still non-zero.
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Figure 1: RG streamlines in the vicinity of a critical point for a theory with 2 coupling
constants.

15 Self-similar coupling constants and beta func-

tions

Consider a critical point with natural c.c.’s ~g = (g1, g2, . . . , gNc.c.). Define the fractal
dimension yj of the c.c. gj by

d ln gj

d ln b
= yj . (28)

In high energy physics, it is common to use, instead of yj, a so called beta function
βj defined by

dgj

d ln be

= βj . (29)

Comparing of Eqs.(28) and (29) and using ln b = − ln be, one finds

βj = −gj yj . (30)

Precisely at the critical point (i.e., at ~g = 0), one must have βj = 0. Amazingly,
in the vicinity of the critical point, the beta function βj must be of the form4

4When ε = 0, the expansion of the beta function in powers of gj usually starts at order(g2
j ). This

is why. The value of aj1 (i.e., the order(g1
j ) coefficient in the expansion of the beta function in powers

of gj) must equal the naive dimension of gj . As explained in Section 16, one usually introduces a
renormalization-point mass µ to make [gj ] = L0. If this is done, aj1 becomes proportional to ε, and
vanishes when ε = 0.

11



βj = βj(gj, ε) = aj1(ε)gj + aj2(ε)g
2
j + aj3(ε)g

3
j + · · · , (31)

where the coefficients ajk are functions only of ε, not of be. Furthermore, one must
have

lim
ε→0

βj = finite number . (32)

Eqs.(29) and (31) yield an easy to solve, separable differential equation. Hence,
given gj and ln(b′e/be), one can find the value of g′j. One describes this felicitous
property by saying that the c.c. gj is self-similar or by saying the humorous statement
that gj is a “running c.c.”.

More generally, if the theory has a set of generalized c.c.’s ~K = (K1, K2, . . . , KNc.c.)
that are not associated with a particular critical point, one can still define beta func-
tions βj(be) by

dKj

d ln be

= βj(be) . (33)

Then a fixed point in the c.c.’s is defined as any point ~K∗ at which βj = 0 for all j. If
~K∗ occurs when be = 0 (ditto, be = 1), we call it an infrared (ditto, ultraviolet) fixed
point.5 For instance, QED (Quantum Electrodynamics) has β > 0 which gives it an
infrared fixed point, whereas QCD (Quantum Chromodynamics) has β < 0 which
gives it an ultraviolet fixed point.

16 The regulator and the fiducial mass scale

A continuous quantum field theory has infinite terms in its perturbation expansion.
That’s not surprising because such a theory describes infinitely many harmonic oscil-
lators, and each of those harmonic oscillators has a finite zero-point energy of ~ω/2.
One regulates the infinities of a quantum field theory by introducing a regulator pa-
rameter with a “catastrophic” value. The infinities go away if the regulator is slightly
off from its catastrophic value, and they come back as the regulator tends to its catas-
trophic value. All observable quantities must be independent of the regulator. The
two most popular regulators in the high energy physics literature are

1. a momentum cutoff Λ. This is called Pauli-Villars regularization.

2. ε = 4− d. This is called dimensional regularization.

5Some might be puzzled by the fact that we speak of be as if it were an energy, although, in reality,
it is a ratio of energies. If the theory has a lattice constant a, define xmin = a and Emax = 1/a.
Recall that be = E/E′. If we keep E′ fixed at E′ = Emax, then be and E are proportional to each
other.
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In case (1), the space-time dimension d is kept fixed at an integer value,
whereas in (2), d varies over a continuum of real numbers.

In case (2), in order to make the c.c.’s dimensionless, one needs to introduce a
fiducial mass scale.6 This fiducial mass scale, called the renormalization-point,
is usually denoted by µ.7 In both cases (1) and (2), we need to introduce a fiducial
mass scale, Λ in case (1) and µ in case (2). Roughly speaking, the fiducial mass scale
parameterizes how we subtract the infinite part of the answer. In case (1), Λ acts
both as the regulator parameter and the fiducial mass scale. In case (2), these two
roles are assigned to separate parameters, ε becomes the regulator and µ the fiducial
mass scale.

High energy physicists usually do not use a scaling factor like be or b. Instead,
they use ln µ (or ln Λ) en lieu of ln be in Eq.(33). That’s no problem. Just replace µ
by beµ (or Λ by beΛ). If you keep µ (or Λ) fixed and allow be to vary, then d ln(beµ)
(or d ln(beΛ) ) can be replaced by d ln be.

17 RG theory has its pi-groups too! Callan-Symanzik

Type Equations

In doing dimensional analysis (Ref.[6]) for a given problem, one usually begins by
finding the pi-groups relevant to the problem. A pi-group (so called because the
symbols π1, π2, . . . are used to represent them) is a product of quantities that is
dimensionless:

[dim-analysis pi-group] = L0 . (34)

Analogously, in RG theory, one can often identify certain compound quantities which
must be scale invariant (i.e., independent of be). I like to call such quantities RG
pi-groups.

d

d ln be

{RG pi-group} = 0 . (35)

The Callan-Symanzik equation used in high energy physics is just a special case of
Eq.(35).

6That’s my own name for it, invented after reading a credit card contract.
7For those who have studied quantum field theory previously, let me remind you of how the

renormalization-point µ arises. The c.c. g is replaced by µpg where the power p is chosen so as
to make g dimensionless. [(ddx)(∂φ)2] = L0 implies [φ] = L1− d

2 . Then [(ddx)µp(gφn)] = L0 with
[g] = L0 and [µ] = L−1 implies d − p + n(1 − d

2 ) = 0. Hence, p = d(1 − n
2 ) + n. For example, in

the φ3 theory in 6 dimensions considered in Srednicki’s book Ref.[3], one gets, using d = 6− ε, that
p = −(6− ε) 1

2 + 3 = ε
2 .
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18 Forgetting initial conditions. Are we cheating

with infinities? Where did the infinities go?

Sometimes it is useful to have infinities in the initial conditions of a problem. For
example, it’s useful to use a Dirac delta function as initial conditions for a diffusion
equation (or for the differential equation obeyed by a Greens’s function). The infinities
in the initial conditions are “ forgotten” at later times, as the solution spreads.

A similar situation occurs with quantum field theories. One starts with bare
c.c.’s like φ0,m0, λ0 and these evolve to dressed c.c.’s like φ, m, λ. The bare c.c.’s cor-
respond to ~K(0) at ultra-high energy scales be = b = 1. The dressed c.c.’s correspond
to ~K(n) for a large n and not-so-ultra-high energy scales, be ∈ (0, 1) but be << 1. The
bare c.c.’s are infinite, but never mind, they are quickly forgotten. They are forgotten
because the c.c.’s are self-similar, so we can find g′ given g and ln(b′e/be). If g is set to
its bare value g = g0, then g and therefore g′ will be infinite, but we never set g = g0.

Note that by the same token, any theory which has infinite initial conditions
which are forgotten, can be regulated with a regulator, and a fiducial mass scale, call
it µ. Then µ can be replaced by beµ with be ∈ (0, 1), and RG theory can be used.
The upshot is that any theory with infinite initial conditions which are forgotten is
amenable to analysis via RG theory.

19 The many faces of a renormalizable theory

When high energy physicists talk about a renormalizable theory, their definition
of what that means keeps changing. Several popular definitions are

1. A theory that yields finite predictions for the observables when those observables
are expressed as perturbation expansions in powers of the c.c.’s.

2. A theory for which only a finite number of c.c.’s are needed in order to achieve
finite predictions for the observables.

3. A theory for which the c.c.’s are self-similar.

4. A theory for which the c.c.’s are dimensionless when ε = 4−d = 0. (Otherwise,
cross-sections blow up at high energies).

So which one is it? One great insight of RG theory is that all these definitions are
roughly equivalent. These properties are all symptoms of a field theory that is in the
vicinity of a critical point.
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