Group Theoretic Bayesian Networks

Robert R. Tucci P.O. Box 226 Bedford, MA 01730 tucci@ar-tiste.com

March 16, 2015

This short article was written as an appendix to a post entitled "Bayesian Networks Do Groups Too" for my blog

"Quantum Bayesian Networks" (www.qbnets.wordpress.com) Suppose \mathcal{G} is a group. Let $\delta(a,b)$ equal 1 if a=b and zero otherwise.

Group multiplication: For any $g, g_1, g_2 \in \mathcal{G}$, let $P(g|g_1, g_2) = \delta(g, g_1g_2)$ be the transition matrix for the node with an asterisk surrounded by a circle:

Group n'th power: Suppose n is any integer, possibly zero or negative. For $g', g \in \mathcal{G}$, let $P(g'|g) = \delta(g', g^n)$ be the transition matrix for the node with n surrounded by a circle:

When n = -1, this node returns g^{-1} , the inverse of g, and when n = 0, it returns $g^0 = e$, the identity element of the group.

Conjugate elements: $g, g' \in \mathcal{G}$ are said to be a conjugate pair of elements of \mathcal{G} if there exists $h \in \mathcal{G}$ such that

Right and Left cosets: Suppose S is a subgroup of G. For any $k \in G$, define

Invariant or Normal subgroup: $\mathcal S$ is an invariant or normal subgroup of

 \mathcal{G} , if it is a subgroup of \mathcal{G} such that, for all $g \in \mathcal{G}$,

Coset multiplication: Suppose S is an invariant subgroup of G. For any $k_1, k_2 \in G$,

One defines $\frac{\mathcal{G}}{\mathcal{S}} = \{ \mathcal{S}k : k \in \mathcal{G} \}$. Then $\mathcal{G} = \mathcal{S} \times \frac{\mathcal{G}}{\mathcal{S}}$.