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This short article was written as an appendix to a post entitled “Bayesian
Networks Do Groups Too” for my blog

“Quantum Bayesian Networks” (www.gbnets.wordpress.com)

Suppose G is a group. Let §(a,b) equal 1 if a = b and zero otherwise.

Group multiplication: For any ¢,¢1,92 € G, let P(glg1,92) = (g, 9192)
be the transition matrix for the node with an asterisk surrounded by a

circle:
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Group n’th power: Suppose n is any integer, possibly zero or negative.
For ¢, g € G, let P(¢'|lg) = 6(¢',g™) be the transition matrix for the
node with n surrounded by a circle:
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When n = —1, this node returns ¢!, the inverse of ¢, and when n = 0,
it returns ¢° = e, the identity element of the group.

Conjugate elements: ¢,¢ € G are said to be a conjugate pair of elements
of G if there exists h € G such that
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Right and Left cosets: Suppose S is a subgroup of G. For any k € G,

define
(&) (k)
\j; — kS, i;/ — Sk (4)

Invariant or Normal subgroup: § is an invariant or normal subgroup of
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G, if it is a subgroup of G such that, for all g € G,
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Coset multiplication: Suppose § is an invariant subgroup of G. For any

ki, ks € G,
(k) (k) () (k) (k)
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(Sk1)(Sk2) Sk1ks

One defines £ = {Sk:k € G}. Then G =S x £.



