
EPR, 2 Particles, Theory

This section deals with the theory of EPR experiments in which 2 spin 1/2
fermions fly apart. We will discuss two variations of this experiment. These variations
will be referred to as the Bohm-Bell and the Clauser-Horne experiments.
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In local realistic theories, an EPR experiment in which 2 spin 1/2 fermions fly
apart is described by the classical Bayesian net shown in Fig.1. In this figure, node
λ represents the hidden variables. We will call Λ the set of states λ which node λ
can assume. For j ∈ {1, 2}, node x

αj
j represents the outcome of a spin measurement

performed on particle j. αj represents the measurement axis. Node x
αj

j may assume
two possible states, + or −, depending on whether the measurement finds the spin
to be pointing up or down along the αj axis. For example, xA

1 = + if a measurement
of the spin of particle 1 along the A axis yields “up”.

It is convenient to define probability functions P
αj
j (·|·), P

αj
j (·), Pα1α2

12 (·|·) and
Pα1α2

12 (·) as follows:

P
αj

j (xj|λ) = P (x
αj

j = xj|λ = λ) , (1)

P
αj

j (xj) = P (x
αj

j = xj) , (2)

Pα1α2
12 (x1, x2|λ) = P (xα1

1 = x1, x
α2
2 = x2|λ = λ) , (3)
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Pα1α2
12 (x1, x2) = P (xα1

1 = x1, x
α2
2 = x2) , (4)

where j ∈ {1, 2}.
Fig.1 implies the following equation:

Pα1α2
12 (x1, x2) =

∑

λ∈Λ

Pα1
1 (x1|λ)Pα2

2 (x2|λ)P (λ) . (5)

Because they satisfy Eq.(5), the random variables xα1
1 and xα2

2 are said to be condition-
ally independent (with respect to λ). Note that conditionally independent variables
xα1

1 and xα2
2 become independent (independent in the sense of probability theory) if

the value of λ is fixed by setting P (λ) = δ(λ, λ0). The acts of measuring xα1
1 and

xα2
2 constitute two events. If the separation between these 2 events is spacelike, then

local realistic theories require that Eq.(5) be true.
We will assume that the particles are created in a state of zero total spin

angular momentum, and that they then fly apart without interacting with anything
else. In Quantum Mechanics, this means that the particles are in the antisymmetric,
singlet state:

|Ψ〉 =
1√
2
(| +z −z〉 − |−z +z〉) . (6)

One can show (see the appendix entitled “Spin 1/2 Particles”) that for this state,

Pα1α2
12 (++) = Pα1α2

12 (−−) =
1

2
sin2(

" (α1, α2)

2
) , (7a)

Pα1α2
12 (+−) = Pα1α2

12 (−+) =
1

2
cos2(

" (α1, α2)

2
) , (7b)

Pα1
1 (+) = Pα2

2 (+) =
1

2
, (7c)

where " (α1, α2) is the angle between axes α1 and α2.

Bohm-Bell Experiment

In the Bohm-Bell experiment, the spin of both particles is measured along
the same 3 axes. Thus, if we call the directions of these axes A, B and C , then
α1, α2 ∈ {A, B, C}. Suppose x, y and z are either + or −. The Bell-inequalities for
the Bohm-Bell experiment are:

PAC
12 (x, z) ≤ PAB

12 (x, y) + PBC
12 (y, z) , (8)

and the 5 other inequalities one gets by permuting the symbols A, B and C . Eq.(8)
is proven in an appendix at the end of this section. The proof given in the appendix
assumes that Local Realism holds.
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FIG. 2
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Next we will combine the local realistic result Eq.(8) with the quantum me-
chanical results Eqs.(7) and arrive at a contradiction. Assume axes A, B and C are
coplanar and " (A, B) = " (B, C) = θ (see Fig.2). Also let x = +, y = − and z = + in
Eq.(8). Then combining Eq.(8) with Eqs.(7) yields

1

2
sin2(θ) ≤ 1

2
cos2(

θ

2
) +

1

2
cos2(

θ

2
) . (9)

This inequality can be simplified to

0 ≤ 1 + cos(2θ) + 2 cos(θ) , (10)

which is violated (maximally) when θ = 3π
4 = 135o.

Thus, Quantum Mechanics tells you that if you measure the spin of particle
1 along the A axis and the spin of 2 along C, where angle(A, C) = 270 degs., and
if you do this many times, you will get a probability PAC

12 (+, +) that is greater than
predicted by Local Realism. Somehow the particles know more about each other than
one would have expected from Local Realism alone.

Clauser-Horne Experiment

In the Clauser-Horne experiment, the spin of particle 1 is measured along
axes A and A′ and that of particle 2 along axes B and B ′. Thus, α1 ∈ {A, A′} and
α2 ∈ {B, B ′}. The Bell inequalities for the Clauser-Horne experiment are:

0 ≤ 1+PAB
12 (++)+PA′B

12 (++)+PAB′

12 (++)−PA′B′

12 (++)−PA
1 (+)−PB

2 (+) ≤ 1 , (11)
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and the three other inequalities produced by (1)interchanging A with A′, (2)inter-
changing B with B ′, (3) interchanging A with A′, and B with B ′. We won’t present
any proof of Eq.(11) here. It may be proven in various ways. See Refs.[1]-[3] if
interested. The proofs given in those references assume that Local Realism holds.

FIG. 3
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Next we will combine the local realistic result Eq.(11) with the quantum me-
chanical results Eqs.(7) to arrive at a contradiction. Assume axes A, A′, B and B ′

are coplanar and " (B ′, A) = " (A, B) = " (B, A′) = θ (see Fig.3). Then combining
Eq.(11) with Eqs.(7) yields

0 ≤ 1 +
3

2
sin2(

θ

2
) − 1

2
sin2(

3θ

2
) − 1

2
− 1

2
≤ 1 . (12)

This last equation simplifies to

− 2 ≤ cos(3θ) − 3 cos(θ) ≤ 2 , (13)

which is violated (maximally) when θ = π
4 = 45o.

Appendix: Proof Of Bell Inequalities For Bohm-Bell Experiment
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Appendix: Proof Of Bell Inequalities
For Bohm-Bell Experiment

This section will present 2 proofs of the Bell Inequalities for the Bohm-Bell
experiment.

For x ∈ {+,−}, let x = + if x = −, and vice versa. Hence, x is the opposite
of x.

Proof 1: We begin by noticing that since the initial state must have zero spin
angular momentum, one must have

Pα
1 (x|λ) = Pα

2 (x|λ) , (1)

where α ∈ {A, B, C} and x ∈ {+,−}. In other words, if we measure the spin of both
particles along the same axis, we expect that the two measurements will always be
opposite. This should be true in any theory that conserves angular momentum.

One has
PAC

12 (x, z|λ)
= PA

1 (x|λ)PC
2 (z|λ)

= PA
1 (x|λ)[PB

1 (y|λ) + PB
1 (y|λ)]PC

1 (z|λ)
≤
PA

1 (x|λ)PB
1 (y|λ) + PB

1 (y|λ)PC
1 (z|λ)

= PAB
12 (x, y|λ) + PBC

12 (y, z|λ)

, (2)

where Eq.(1) has been used repeatedly. Multiplying both sides of inequality Eq.(2)
by P (λ) and adding over all λ ∈ Λ yields

PAC
12 (x, z) ≤ PAB

12 (x, y) + PBC
12 (y, z) . (3)

Proof 2: This proof is based on the following equation from the section
entitled “EPR, 2 Particles, Theory”:

Pα1α2
12 (x1, x2) =

∑

λ∈Λ

Pα1
1 (x1|λ)Pα2

2 (x2|λ)P (λ) . (4)

Suppose xα
j is a random variable with values xα

j ∈ {+,−}, where j ∈ {1, 2}
and α ∈ {A, B, C}. xα

j represents the value obtained by a measurement of particle j
along axis α. Define X1, X2 and X by

X1 = (xA
1 , xB

1 , xC
1 ) , X2 = (xA

2 , xB
2 , xC

2 ) , X = (X1, X2) , (5)
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and define X1, X2 and X analogously.
Suppose we replace in Eq.(5) the hidden variables λ by the special hidden

variables X :

P (λ = λ) → P (X = X) . (6)

According to Quantum Mechanics, the probability distribution P (X) does not
exist, because its existence would imply that one can know precisely and simultaneous
the values of complementary variables such as xA

1 and xB
1 . However, Local Realism,

which is what we are assuming in this proof, does not object to the existence of P (X).
Since the variables X arise so naturally in this problem, we will call them the

canonical hidden variables for this problem. It might seem that we loose generality
by considering only canonical hidden variables, but this is not so. When the hidden
variables are not the canonical ones, their effect on this particular problem can always
be mimicked identically by a suitable probability distribution P (X) of the canonical
hidden variables.

Notice that because of conservation of angular momentum, P (X) vanishes
unless X2 = −X1. Therefore, P (X) can be expressed as

P (X) = σ(X1)δ(X1,−X2) , (7)

where σ(·) is some probability function of X1.
Combining Eq.(7) and Eq.(5), one gets

PAB
12 (x, y) ≤

∑

xC
1 ∈{+,−}

σ(x, y, xC
1 ) = σ(x, y, z) + σ(x, y, z) , (8a)

PBC
12 (y, z) ≤

∑

xA
1 ∈{+,−}

σ(xA
1 , y, z) = σ(x, y, z) + σ(x, y, z) , (8b)

PAC
12 (x, z) ≤

∑

xB
1 ∈{+,−}

σ(x, xB
1 , z) = σ(x, y, z) + σ(x, y, z) . (8c)

The first term on the right side of Eq.(8c) is the first term on the right side of
Eq.(8b). The second term on the right side of Eq.(8c) is the first term on the right
side of Eq.(8a). Therefore, Eq.(3) above follows.
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