
What is the CS Decomposition, and how does one

use it to do quantum compiling?(by rrtucci)

Suppose that U is an N ×N unitary matrix, where N is an even number. The CSD
(Cosine Sine Decomposition) Theorem states1 that one can always express U in the
form

U =

[
L0 0
0 L1

]
D

[
R0 0
0 R1

]
, (1a)

where the left and right matrices L0, L1, R0, R1 are N
2
× N

2
unitary matrices, and

D =

[
D00 D01

D10 D11

]
, (1b)

D00 = D11 = diag(C1, C2, . . . , CN
2
) , (1c)

D01 = diag(S1, S2, . . . , SN
2
) , D10 = −D01 . (1d)

For all i ∈ Z1, N
2
, Ci = cos θi and Si = sin θi for some angle θi. Eqs.(1) can be

expressed more succinctly as

U = (L0 ⊕ L1)e
iσY ⊗Θ(R0 ⊕R1) , (2)

where Θ = diag(θ1, θ2, . . . , θN
2
).

D

U

L
0

L
1

R
0

R
1

Figure 1: Diagrammatic representation of CS decomposition, Eq.(1).

Fig.1 is a diagrammatic representation of the CSD. Note that: (1)Matrix U
is assigned to the incoming arrow. (2)Matrix D is assigned to the node. (3)Matrices
R0 ⊕R1 and L0 ⊕ L1 are each assigned to an outgoing arrow.

The CS decomposition was first used for quantum compiling in Tuc99[2]. In
the Tuc99 compiling algorithm, the CSD is used recursively. A nice way of picturing

1Actually, this is only a special case of the CSD Theorem as stated in Ref.[1]—the case which is
most relevant to quantum computing. The general version of the CSD Theorem does not restrict
the dimension of U to be even, or even restrict the blocks into which U is partitioned to be of equal
size.

1



U

D
00 D01 D10 D11

D
0 D1

D

L 00 L01 L10 L 11 R00 R01 R10 R11

L
0

L
1

R
0

R
1

L 00 L01 L10
L

11
R00 R01 R10 R11

(1) (1)

(1)

(1) (1)

(2) (2) (2) (2)

(2) (2)

(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3)
D0 D

1

(3) (3)

(4) (4) (4) (4) D00 D01 D10 D11
(5) (5) (5) (5) D00 D01 D10 D11

(6) (6) (6) (6) D00 D01 D10
D

11
(7) (7) (7) (7)

in

level 0

level 1

level 2

Figure 2: A CSD binary tree. It arises from the recursive application of the CSD.

this recursive use of the CSD is to represent each CSD application by a node, as
in Fig1. The recursion connects these nodes so as to form a binary tree, as shown
in Fig.2. In Fig.2, we start with an initial unitary matrix Uin entering the root
node, which we define as level 0. Without loss of generality, we can assume that the
dimension of Uin is 2NB for some NB ≥ 1. (If initially Uin’s dimension is not a power
of 2, we replace it by a direct sum Uin ⊕ Ir whose dimension is a power of two.) We

apply the CSD method to Uin. This yields for level 0 a D matrix D
(1)
0 , two unitary

matrices L
(1)
0 and L

(1)
1 on the left side and two unitary matrices R

(1)
0 and R

(1)
1 on the

right side. Then we apply the CSD method to each of the 4 matrices L
(1)
0 , L

(1)
1 , R

(1)
0

and R
(1)
1 that were produced in the previous step. Then we apply the CSD method

to each of the 16 R and L matrices that were produced in the previous step. And so
on. The nodes of level NB don’t have R, L arrows coming out of them since the D
matrices for those nodes are all 1× 1.

Call a central matrix either (1) a single D matrix, or (2) a direct sum D1 ⊕
D2⊕ · · · ⊕Dr of D matrices, or (3) a diagonal unitary matrix. From Fig.2, it is clear
that the initial matrix Uin can be expressed as a product of central matrices, with
each node of the tree providing one of the central matrices in the product. We can use
this factorization of Uin into central matrices to compile Uin, if we can find a method
for decomposing any central matrix into a SEO. Tuc99 gives such a method.

The Tuc99 algorithm is implemented in a computer program called Qubiter,
available at Ref.[3].

References

[1] C. C. Paige and M. Wei, “History and Generality of the CS Decomposition,”
Linear Algebra and Appl. 208/209(1994)303-326.

[2] R.R. Tucci, “A Rudimentary Quantum Compiler(2cnd Ed.)”, arXiv:quant-
ph/9902062

[3] www.ar-tiste.com/qubiter.html

2


