
Method For Driving

Starting Quantum State to Target One

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

October 5, 2010

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

REFERENCE TO COMPUTER PROGRAM LIST-

ING

A computer program listing appendix contained in a single compact disc (CD) is

included herewith and incorporated by reference herein. The CD is in IBM-PC format

and was burned with a computer running the Windows 98 operating system. The

CD contains a single file titled quibbs1-4.txt, in ASCII format, of size 512 KBytes,

burnt onto the CD on Oct. 3, 2010.

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to a quantum computer; that is, an array of quantum bits

(called qubits). More specifically, it relates to methods for using a classical computer

to generate a sequence of operations that can be used to operate a quantum computer.

2

(B)DESCRIPTION OF RELATED ART

Henceforth, we will allude to certain references by codes. Here is a list of codes and

the references they will stand for.

Ref.GWiki is http://en.wikipedia.org/wiki/Grover’s algorithm

Ref.GOrig is “Quantum Mechanics Helps in Searching for a Needle in a Haystack”,

by Lov. K Grover, in Phys. Rev. Letters Vol. 79, Num. 2, pp. 325-328,

published on Jul of 1997.

Ref.GPat is “Fast Quantum Mechanical Algorithms”, US Patent 6,317,766, by Lov

K. Grover

Ref.TexasPat is “Quantum Circuit Design for Grover’s Algorithm”, US Patent

7,028,275, by G. Chen, Z. Diao, M. Zubairy

Ref.GPi/3 is “A Different Kind of Quantum Search” by Lov Grover, arXiv:quant-

ph/0503205

Ref.Toy “Multi-phase matching in the Grover algorithm” by F.M. Toyama, W. van

Dijk, Y. Nogami, M. Tabuchi, Y. Kimura, arXiv:0801.2956

Ref.TucAfga is “An Adaptive, Fixed-Point Version of Grover’s Algorithm” by R.R.

Tucci, arXiv:1001.5200.

Ref.TucQuibbs2 is “Quibbs, a Code Generator for Quantum Gibbs Sampling” by

R.R. Tucci, arXiv:1004.2205

This invention deals with quantum computing. A quantum computer is an

array of quantum bits (qubits) together with some hardware for manipulating those

qubits. Quantum computers with several hundred qubits have not been built yet.

However, once they are built, it is expected that they will perform certain calcula-

tions much faster that classical computers. A quantum computer follows a sequence

3

of elementary operations. The operations are elementary in the sense that they act

on only a few qubits (usually 1, 2 or 3) at a time. Henceforth, we will sometimes refer

to sequences as products and to operations as operators, instructions, steps or gates.

Furthermore, we will abbreviate the phrase “sequence of elementary operations” by

“SEO”. SEOs are often represented as quantum circuits. In the quantum computing

literature, the term “quantum algorithm” usually means a SEO for quantum com-

puters for performing a desired calculation. Some quantum algorithms have become

standard, such as those due to Deutsch-Jozsa, Shor and Grover. One can find on the

Internet many excellent expositions on quantum computing.

Henceforth, we will abbreviate the phrase “Grover’s Algorithm” by GA.

The original GA (first proposed in Ref.GOrig, patented in Ref.GPat, dis-

cussed in Ref.GWiki) has turned out to be very useful in quantum computing. Many

quantum algorithms rely on it. It drives a starting state towards a target state by

performing a sequence of equal steps. By this we mean that each step is a rotation

about the same fixed axis and by the same small angle. Because each step is by the

same angle, the algorithm overshoots past the target state once it reaches it.

About 8 years after Ref.GOrig, Grover proposed in Ref.GPi/3 a “pi/3 fixed-

point” algorithm which uses a recursion relation to define an infinite sequence of

gradually diminishing steps that drives the starting state to the target state with

absolute certainty.

Other workers have pursued what they refer to as a phase matching approach

to GA. Ref.Toy is a recent contribution to that approach, and has a very complete

review of previous related contributions.

In this invention, we describe what we call an Adaptive, Fixed-point, Grover’s

Algorithm (AFGA, like Afgha-nistan, but without the h).

Our AFGA resembles the original GA in that it applies a sequence of rotations

about the same fixed axis, but it differs from the original GA in that the angle of

successive rotations is different. Thus, unlike the original GA, our AFGA performs a

4

sequence of unequal steps.

Our AFGA resembles the pi/3 GA in that it is a fixed-point algorithm that

converges to the target, but it differs from the pi/3 GA in its choice of sequence of

unequal steps.

Our AFGA resembles the phase-matching approach of Ref.Toy, but their al-

gorithm uses only a finite number of distinct “phases”, whereas our AFGA uses an

infinite number. Unlike AFGA, the Ref.Toy algorithm is not guaranteed to converge

to the target so it is not a true fixed-point algorithm.

Many quantum algorithms require a version of GA that works even if there is

a large overlap between the starting state and the target state. The original GA only

works properly if that overlap is very small. AFGA and the pi/3 GA do not have

this small overlap limitation. However, AFGA is significantly more efficient than the

pi/3 GA.

Previous patents Ref.GPat and Ref.TexasPat are based on the original GA.

The inventor Tucci believes that the present invention is an important improvement

on those past patents because it is based on AFGA rather than on the original GA.

As explained already, contrary to the original GA, AFGA converges with absolute

certainty to the target state, and it does not require a small overlap between the

starting and target states.

The inventor Tucci first published a description of this invention on Jan 28,

2010, in Ref.TucAfga. Later, Tucci discussed an application of this invention in

Ref.TucQuibbs2.

BRIEF SUMMARY OF THE INVENTION

We refer to the algorithm of Ref.TucAfga as AFGA. A preferred embodiment of

this invention is computer program that runs on a classical computer and acts as

an AFGA code generator. By this we mean that it generates a SEO (Sequence of

Elementary Operations) which implements AFGA, and can be used to operate a

5

quantum computer. The SEO drives as near as desired, in an efficient way, a starting

quantum state to a target one.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 shows a block diagram of a classical computer feeding data to a quantum

computer.

FIG.2 shows a quantum circuit generated by an AFGA code generator.

FIG.3 shows Octave/Matlab code for a program called afga.m which calculates the

sequence {αj}∞j=0.

FIG.4 shows Octave/Matlab code for functions afga rot.m and afga step.m which

are called by the program given in FIG.3.

FIG.5 shows a variation of the quantum circuit of FIG.2 which uses approximate

gates.

DETAILED DESCRIPTION OF THE INVENTION

This section describes a preferred embodiment of the invention and other possible

embodiments of the invention.

A preferred embodiment of this invention is computer program that runs on

a classical computer and acts as an AFGA code generator (or, equivalently, as a

quantum circuit generator or as a SEO generator). By this we mean that it generates

a SEO which implements AFGA and can be used to operate a quantum computer.

The SEO drives as near as desired, in an efficient way, a starting quantum state to a

target one.

This patent includes a Compact Disc with source code for a computer program,

written in Java, called Quibbs1.4. Quibbs is described in Ref.TucQuibbs2. Quibbs

6

generates a SEO which can be used to operate a quantum computer and thereby

induce it to sample a probability distribution. The Quibbs source code contains a lot

of code which is irrelevant to this invention, but it does contain in it an AFGA code

generator which can be taken as an example of a useful application of this invention.

Henceforth we will say |v〉 is a unit vector if 〈v|v〉 = 1. Consider two unit

vectors |v1〉 and |v2〉 and let D = ||v1〉 − |v2〉|2. We will say that |v1〉 and |v2〉 are

approximately equal to each other if D/4 is significantly smaller than one. We will

say that they are equal if D = 0. We will say that |v1〉 and |v2〉 are equal (respectively,

approximately equal) up to a phase factor if there is some real number α such that

|v1〉 and eiα|v2〉 are equal (respectively, approximately equal). We will say that |v1〉 is

an approximate eigenvector of an operator Ω if there exists a vector |v2〉 which is an

eigenvector of Ω and |v1〉 is approximately equal to |v2〉. We will say that two unitary

operators Ω1 and Ω2 acting on the same vector space V of dimension dim(V) are

approximately equal if trace[(Ω1 − Ω2)(Ω
†
1 − Ω†

2)]/[4dim(V)] is significantly smaller

than one.

Consider any operator of the form Ω = exp(iα|v〉〈v|) where α is a real number

and where |v〉 is a unit vector. Note that Ω has only two distinct eigenvalues, namely

exp(iα) and 1. In fact, |v〉 is an eigenvector of Ω with eigenvalue exp(iα), whereas any

vector orthogonal to |v〉 has eigenvalue 1. The original GA (the one in Ref.GOrig)

uses operators of the form Ω, with α equal to π or −π. The pi/3 GA (the one in

Ref.GPi/3) uses operators of the form Ω, with α equal to π/3 or −π/3. AFGA, on

the other hand, uses operators of the form Ω, with α equal to αj or ∆λ where αj

tends to zero as j tends to infinity.

FIG.1 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. This invention includes software

that runs inside Box 100. Box 100 comprises sub-boxes 101, 102, 103. Box 101

represents input devices, such as a mouse or a keyboard. Box 102 comprises the

CPU, internal and external memory units. Box 102 does calculations and stores

7

information. Box 103 represents output devices, such as a printer or a display screen.

Box 105 represents a quantum computer, comprising an array of quantum bits and

some hardware for manipulating the state of those qubits.

The remainder of this section is divided into 2 subsections. Subsection (A)

describes a quantum circuit generated by an AFGA code generator. Subsection (B)

discusses other possible embodiments of the invention.

(A)Quantum Circuit

In this section, we describe a quantum circuit generated by an AFGA code generator.

For a more detailed description of the circuit, see Ref.TucAfga.

201 in FIG.2 is a quantum circuit generated by an AFGA code generator. Let

NB and Nste be some positive integers. Circuit 201 starts off in an initial state |s′〉 of

NB qubits. This initial state is then subjected to Nste + 1 operators (“ste” stands for

steps). We will next proceed to describe the nature of each of these Nste+1 operators.

Each of the boxes in circuit 201 is a product of two operators, R
(j)
beg and Rtar.

“beg” stands for “beginning” and “tar” for “target”.

Let ∆λ be a real number between 0 and π, and let {αj}∞j=0 be a sequence of real

numbers. ∆λ can be selected by the user. Ref.TucAfga explains how to calculate

the angles αj and FIG.3 together with FIG.4 show an Octave/Matlab program that

calculates them explicitly.

Equation 202 defines R
(j)
beg in terms of the state |s′〉 and the angles αj. Equation

203 defines Rtar in terms of the state |t〉 and the angle ∆λ. Equation 204 defines

an angle γ which characterizes the overlap between states |s′〉 and |t〉. γ must be

in the interval [0, π]. It cannot be precisely π, or else |s′〉 and |t〉 will be exactly

orthogonal in which case AFGA won’t work. Equation 205 stipulates that the state

|FIN〉 defined by Equation 201 must be approximately equal (up to a phase factor

eiα) to state |t〉.
FIG.3 shows Octave/Matlab code for a program called afga.m. FIG.4 shows

8

Octave/Matlab code for functions afga rot.m and afga step.m which are called by

the program afga.m. The first 3 lines of afga.m instantiate its 3 input parameters:

(a) g0 degs =γ in degrees

(b) del lam degs= ∆λ in degrees

(c) num steps = Nste

Each time afga.m runs successfully, it outputs α0, α1, . . . , αNste . It also outputs other

quantities. For a detailed description of all the outputs of afga.m, see Ref.TucAfga.

(B)Other Embodiments

In this section, we describe other possible embodiments of the invention.

FIG.5 shows an embodiment of the invention which is similar to the one in

FIG.2. Let c be a positive integer. 201 of embodiment FIG.2 applies a sequence of

Nste+1 operators to a state |s′〉 of NB qubits. On the other hand, 501 of embodiment

FIG.5 applies a sequence of Nste + 1 operators to a state of c + NB qubits which is a

tensor product of state |0〉 for the top c qubits and state |s′〉 for the bottom NB qubits.

The extra c auxiliary qubits are used as scratch space. The Quibbs1.4 program (whose

source code is in the Compact Disc included with this patent) in fact comprises an

implementation of the embodiment of FIG.5.

Each of the boxes in circuit 501 is a product of two operators, R̃
(j)
beg and R̃tar.

According to equation 502, R̃
(j)
beg is approximately equal to an operator which acts

as the identity on the top c qubits and the operator R
(j)
beg defined in 202 which acts

only on the bottom NB qubits. Likewise, according to Equation 503, R̃tar can be

approximated by an operator which acts as the identity on the top c qubits and the

operator Rtar defined in 203 which acts only on the bottom NB qubits. Equation

504 stipulates that the state defined by Equation 501 must be approximately equal

(up to a phase factor) to a state which is a tensor product of |0〉 for each of the top

c qubits and |t〉 for the bottom NB qubits.

9

As is done in Quibbs1.4, the operators R̃
(j)
beg and R̃tar can be expressed as a

SEO.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

10

I claim:

1. A method of operating a classical computer to calculate a total SEO, with the

purpose of using said total SEO to operate a quantum computer, and to induce

said quantum computer to drive a starting unit vector |s′〉 towards a target unit

vector |t〉, said method comprising the steps of:

storing in said classical computer a data trove comprising a positive number

ε, and a data-set sufficient to determine |〈s′|t〉|,

calculating using said classical computer and using said data trove, a sequence

of unitary operators U0, U1, U2, . . . , UM , wherein M depends on ε, wherein

there are unit vectors |Φ1〉 and |Φ2〉 such that if ERR = ||v1〉−|v2〉|2 where

|v1〉 = UM . . . U1U0|s′〉 ⊗ |Φ1〉 and |v2〉 = |t〉 ⊗ |Φ2〉, then ERR ≤ ε,

calculating using said classical computer for each j = 0, 1, 2, . . . M , a SEO Σj

corresponding to Uj, wherein said total SEO equals the product ΣM . . . Σ1Σ0,

wherein for a multiplicity of j, Uj is approximately equal to an operator of the

special form

A†
j{ exp(λj|tj〉〈tj|)⊗Bj }Aj

for some real number λj not in the set {π/3,−π/3, π,−π}, some unit vector

|tj〉, and some unitary operators Aj and Bj.

2. The method of claim 1, wherein for almost all j, Uj is approximately equal to

an operator of said special form.

3. The method of claim 1, wherein for each j = 0, 1, 2, . . . M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

4. The method of claim 1, further utilizing a quantum computer, comprising the

additional step of:

11

operating said quantum computer according to said total SEO.

5. The method of claim 1, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |s′〉 ⊗ |α〉 for some state |α〉, as

approximate eigenvector, and unitary operators that have |t〉 ⊗ |β〉 for some

state |β〉, as approximate eigenvector.

6. A device that calculates a total SEO, with the purpose of using said total SEO to

operate a quantum computer, and to induce said quantum computer to drive a

starting unit vector |s′〉 towards a target unit vector |t〉, said device comprising:

a memory arranged to store a data trove comprising a positive number ε, and

a data-set sufficient to determine |〈s′|t〉|,

a processor arranged to calculate using said data trove stored in said mem-

ory, a sequence of unitary operators U0, U1, U2, . . . , UM , wherein M de-

pends on ε, and arranged to calculate for each j = 0, 1, 2, . . . M , a SEO

Σj corresponding to Uj, wherein there are unit vectors |Φ1〉 and |Φ2〉 such

that if ERR = ||v1〉 − |v2〉|2 where |v1〉 = UM . . . U1U0|s′〉 ⊗ |Φ1〉 and

|v2〉 = |t〉 ⊗ |Φ2〉, then ERR ≤ ε, wherein said total SEO equals the prod-

uct ΣM . . . Σ1Σ0,

wherein for a multiplicity of j, Uj is approximately equal to an operator of the

special form

A†
j{ exp(λj|tj〉〈tj|)⊗Bj }Aj

for some real number λj not in the set {π/3,−π/3, π,−π}, some unit vector

|tj〉, and some unitary operators Aj and Bj.

7. The device of claim 6, wherein for almost all j, Uj is approximately equal to an

operator of said special form.

12

8. The device of claim 6, wherein for each j = 0, 1, 2, . . . M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

9. The device of claim 6, further comprising a quantum computer that operates

according to said total SEO.

10. The device of claim 6, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |s′〉 ⊗ |α〉 for some state |α〉,
as approximate eigenvector, and unitary operators that have |t〉 ⊗ |β〉 for some

state |β〉, as approximate eigenvector.

11. A method of operating a classical computer to calculate a total SEO, with the

purpose of using said total SEO to operate a quantum computer, and to induce

said quantum computer to drive a starting unit vector |s′〉 towards a target unit

vector |t〉, said method comprising the steps of:

storing in said classical computer a data trove comprising a positive number

ε, and a data-set sufficient to determine |〈s′|t〉|,
calculating using said classical computer and using said data trove, a sequence

of unitary operators U0, U1, U2, . . . , UM , wherein M depends on ε, wherein

there are unit vectors |Φ1〉 and |Φ2〉 such that if ERR = ||v1〉−|v2〉|2 where

|v1〉 = UM . . . U1U0|s′〉 ⊗ |Φ1〉 and |v2〉 = |t〉 ⊗ |Φ2〉, then ERR ≤ ε,

calculating using said classical computer for each j = 0, 1, 2, . . . M , a SEO Σj

corresponding to Uj, wherein said total SEO equals the product ΣM . . . Σ1Σ0,

wherein if A is the subset of {0, 1, 2, . . . M} such that for all j in A, Uj has only

two distinct eigenvalues λ1j and λ2j, and the product λ1jλ
∗
2j is not in the set

{eiπ/3, e−iπ/3,−1}, then A has 3 or more elements.

12. The method of claim 11, wherein A has about M elements.

13. The method of claim 11, wherein for each j = 0, 1, 2, . . . M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

13

14. The method of claim 11, further utilizing a quantum computer, comprising the

additional step of:

operating said quantum computer according to said total SEO.

15. The method of claim 11, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |s′〉 ⊗ |α〉 for some state |α〉, as

approximate eigenvector, and unitary operators that have |t〉 ⊗ |β〉 for some

state |β〉, as approximate eigenvector.

16. A device that calculates a total SEO, with the purpose of using said total SEO to

operate a quantum computer, and to induce said quantum computer to drive a

starting unit vector |s′〉 towards a target unit vector |t〉, said device comprising:

a memory arranged to store a data trove comprising a positive number ε, and

a data-set sufficient to determine |〈s′|t〉|,

a processor arranged to calculate using said data trove stored in said mem-

ory, a sequence of unitary operators U0, U1, U2, . . . , UM , wherein M de-

pends on ε, and arranged to calculate for each j = 0, 1, 2, . . . M , a SEO

Σj corresponding to Uj, wherein there are unit vectors |Φ1〉 and |Φ2〉 such

that if ERR = ||v1〉 − |v2〉|2 where |v1〉 = UM . . . U1U0|s′〉 ⊗ |Φ1〉 and

|v2〉 = |t〉 ⊗ |Φ2〉, then ERR ≤ ε, wherein said total SEO equals the prod-

uct ΣM . . . Σ1Σ0,

wherein if A is the subset of {0, 1, 2, . . . M} such that for all j in A, Uj has only

two distinct eigenvalues λ1j and λ2j, and the product λ1jλ
∗
2j is not in the set

{eiπ/3, e−iπ/3,−1}, then A has 3 or more elements.

17. The device of claim 16, wherein A has about M elements.

18. The device of claim 16, wherein for each j = 0, 1, 2, . . .M , said SEO Σj has a

number of elementary operations that scales polynomially in NB.

14

19. The device of claim 16, further comprising a quantum computer that operates

according to said total SEO.

20. The device of claim 16, wherein said sequence of unitary operators U0, U1, . . . UM

alternates between unitary operators that have |s′〉 ⊗ |α〉 for some state |α〉, as

approximate eigenvector, and unitary operators that have |t〉 ⊗ |β〉 for some

state |β〉, as approximate eigenvector.

15

ABSTRACT

We describe a method for using a classical computer to generate a sequence of ele-

mentary operations (SEO) that can be used to operate a quantum computer. The

SEO drives as near as desired, in an efficient way, a starting quantum state to a target

one.

16

