
Multiplexor Approximation Method

For Quantum Compilers

Robert R. Tucci

P.O. Box 226

Bedford, MA 01730

tucci@ar-tiste.com

December 8, 2005

1

CROSS REFERENCES TO RELATED APPLICA-

TIONS

Not Applicable

STATEMENT REGARDING FEDERALLY SPON-

SORED RESEARCH AND DEVELOPMENT

Not Applicable

BACKGROUND OF THE INVENTION

(A)FIELD OF THE INVENTION

The invention relates to an array of quantum bits (qubits) commonly known as a

quantum computer. More specifically, it relates to methods for translating an in-

put data-set into a sequence of operations according to which such an array can be

manipulated.

(B)DESCRIPTION OF RELATED ART

This invention deals with Quantum Computing. A quantum computer is an array of

quantum bits (qubits) together with some hardware for manipulating these qubits.

Quantum computers with several hundred qubits have not been built yet. However,

once they are built, it is expected that they will perform certain calculations much

faster that classical computers. A quantum computer can be made to follow a se-

quence of elementary operations. The operations are elementary in the sense that

they act on only a few qubits (usually 1, 2 or 3) at a time. For example, CNOTs

and one-qubit rotations are elementary operations. (A CNOT is a special type of

2

operation that spans two qubits: a control bit and a target bit. The control bit is

often called just the control and the target bit just the target.) Henceforth, we will

sometimes refer to sequences as products and to operations as operators, instructions,

steps or gates. Furthermore, we will abbreviate the phrase “sequence of elementary

operations” by “SEO”. SEOs are often represented as qubit circuits. For a detailed

discussion of quantum computing, see NieChu00 [M. Nielsen, I. Chuang, Quan-

tum Computation and Quantum Information, (Cambridge University Press, 2000)] .

Also, one can find at www.arxiv.org some excellent, more recent, free introductions

to quantum computing.

We will use the term quantum compiling algorithm to refer to an algorithm

that can decompose (“compile”) an arbitrary unitary matrix into a SEO, which can

then be used to operate a quantum computer. We will use the term quantum compiler

to refer to a software program that runs on a classical computer and implements a

quantum compiling algorithm (It may do more than this). An early type of quan-

tum compiling algorithm is discussed in Bar95[A. Barenco et al, “Elementary Gates

for Quantum Computation”, quant-ph/9503016] . A different type of quantum com-

piling algorithm was invented by Tucci and is discussed in QbtrPat [US Patent

6,456,994 B1, by R. R. Tucci] , Tuc99 [R.R. Tucci, “A Rudimentary Quantum Com-

piler (2cnd Ed.)”, quant-ph/9902062] , Tuc04Nov [R.R. Tucci, “Qubiter Algorithm

Modification, Expressing Unstructured Unitary Matrices with Fewer CNOTs”, quant-

ph/0411027] , and Tuc04Dec [R.R. Tucci, “Quantum Compiling with Approxima-

tion of Multiplexors”, quant-ph/0412072] . Tucci has also written a quantum compiler

program called Qubiter that implements the ideas of QbtrPat.

A U(2)-multiplexor will be defined precisely later in this document. The quan-

tum compiling algorithm of QbtrPat and related work decomposes an arbitrary

unitary matrix into a sequence of U(2)-multiplexors, each of which is then decom-

posed into a SEO. (Although QbtrPat uses U(2)-multiplexors, it does not refer to

them by this name, which is of more recent vintage.) After QbtrPat was issued,

3

other workers (see Mich04 [V.V.Shende, S.S.Bullock, I.L.Markov, “A Practical Top-

down Approach to Quantum Circuit Synthesis”, quant-ph/0406176] and Hels04 [V.

Bergholm, J. Vartiainen, M.Mottonen, M. Salomaa, “Quantum circuit for a direct

sum of two-dimensional unitary operators”, quant-ph/0410066]) have proposed al-

ternative quantum compiling algorithms that also generate U(2)-multiplexors as an

intermediate step.

One measure of the inefficiency of a quantum compiler is the number of CNOTs

it uses to express an unstructured unitary matrix (i.e., a unitary matrix with no special

symmetries). Call this number NCNOT . Although good quantum compilers must

also deal with structured matrices, unstructured matrices are certainly an important

case worthy of attention. Minimizing NCNOT is a reasonable goal, since a CNOT

operation (or any multi-qubit operation) is expected to take more time to perform

and to introduce more environmental noise into the quantum computer, than a one-

qubit rotation. Mich03 [V.V.Shende, I.L.Markov, S.S.Bullock, “On Universal Gate

Libraries and Generic Minimal Two-qubit Quantum Circuits”, quant-ph/0308033]

proved that for matrices of dimension 2NB (where NB = number of bits), one has

NCNOT ≥ 1
4
(4NB−3NB−1). This lower bound is achieved for NB = 2 by the 3 CNOT

circuits first proposed in Vidal93 [G. Vidal, C.M. Dawson, “A Universal Quantum

Circuit for Two-qubit Transformations with 3 CNOT Gates”, quant-ph/0307177] . It

is not known whether this bound can be achieved for NB ≥ 3.

As the table of FIG.1 illustrates, compiling an unstructured unitary matrix

with NB > 10 requires more than a million CNOTs. Thus, we desperately need an

approximation method whereby, given any unitary matrix Uin, we can find another

unitary matrix V such that: (1) V approximates Uin well, and (2) V is expressible

with fewer CNOTs than Uin. This patent proposes one such approximation method.

The use of approximation methods in quantum compiling dates back to the

earliest papers in the field. For example, Copper94 [Don Coppersmith, “An approx-

imate Fourier transform useful in quantum factoring”, (1994 IBM Internal Report),

4

quant-ph/0201067] and Bar95 contain discussions on this issue. The approximation

method claimed herein differs substantially from all previously proposed methods.

Unlike previous approximation methods, the method propose herein involves approx-

imating U(2)-multiplexors.

The method proposed herein for approximating Uin is to approximate some

or all of the intermediate U(2)-multiplexors whose product equals Uin. One can

approximate a U(2)-multiplexor by another U(2)-multiplexor (the “approximant”)

that has fewer controls, and, therefore, is expressible with fewer CNOTs. We will call

the reduction in the number of control bits the bit deficit δB. FIG.2 is emblematic

of our approach. It shows a U(2)-multiplexor with 3 controls being approximated by

either a U(2)-multiplexor with 2 controls or one with 1 control.

Tucci has previously published a description of this invention in Tuc04Dec.

Tuc04Dec presents some details about this invention that are not included in this

specification. Tucci considers Tuc04Dec to be essentially correct and in agreement

with this specification, and he wishes Tuc04Dec to be considered a part of this

specification.

BRIEF SUMMARY OF THE INVENTION

A quantum computer is an array of quantum bits (qubits) together with some hard-

ware for manipulating these qubits.

A quantum compiling algorithm is an algorithm for decomposing (“compiling”)

an arbitrary unitary matrix into a sequence of elementary operations (SEO), which

can then be used to operate a quantum computer. A quantum compiler is a software

program that runs on a classical computer and implements a quantum compiling

algorithm.

A quantum compiler previously invented by Tucci decomposes an arbitrary

unitary matrix Uin into a sequence of intermediate U(2)-multiplexors, each of which

5

is then decomposed into a SEO.

A preferred embodiment of this invention is a subroutine within a quantum

compiler program. The subroutine approximates some or all of the intermediate U(2)-

multiplexors whose product equals Uin. The effect of using the subroutine within the

quantum compiler is that we obtain a SEO that doesn’t equal Uin exactly, but has

the virtue of containing fewer CNOTs (or some other type of multi-qubit gate) than

an exact SEO.

In a preferred embodiment of the invention, the subroutine approximates a

U(2)-multiplexor by another U(2)-multiplexor that has fewer controls, and, therefore,

is expressible with fewer CNOTs.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows, for each NB, a lower bound on the number of CNOTs required to

express an NB-bit unstructured unitary matrix.

FIG. 2 shows an example of approximating a U(2)-multiplexor by another U(2)-

multiplexor with δB fewer controls.

FIG. 3 shows two diagrammatic representations of a U(2)-multiplexor.

FIG. 4 shows two possible decompositions of an Ry(2)-multiplexor with 1 control.

FIG. 5 shows four possible decompositions of an Ry(2)-multiplexor with 2 controls.

FIG. 6 shows one of several possible decompositions of an Ry(2)-multiplexor with 3

controls.

FIG. 7 shows one of several possible decompositions of an Ry(2)-multiplexor with 4

controls.

FIG. 8 shows the first part of an “out phis.txt” file.

6

FIG. 9 shows box 91, which is the second part of an “out phis.txt” file (first part in

FIG.8), and box 92, which is all of an “out error.txt” file.

FIG. 10 shows a block diagram of a classical computer feeding data to a quantum

computer.

DETAILED DESCRIPTION OF THE INVENTION

(A)Theory Behind New Method

Notation

First, we will define some notation that is used throughout this patent and in re-

lated documents. For additional information about our notation, we recommend that

the reader consult Tuc04Dec and Paulinesia[R.R.Tucci, “QC Paulinesia”, quant-

ph/0407215] . Paulinesia is a review article, written by the author of this patent,

which uses the same notation as this patent.

Let Bool = {0, 1}. As usual, let Z,R,C represent the set of integers (negative

and non-negative), real numbers, and complex numbers, respectively. For integers a,

b such that a ≤ b, let Za,b = {a, a + 1, . . . b− 1, b}. For Γ equal to Z or R, let Γ>0 and

Γ≥0 represent the set of positive and non-negative Γ numbers, respectively. For any

positive integer r and any set S, let Sr denote the Cartesian product of r copies of

S; i.e., the set of all r-tuples of elements of S.

For any (not necessarily distinct) objects a1, a2, a3, . . ., let {a1, a2, a3, . . .}ord de-

note an ordered set. For some object b, let b{a1, a2, a3, . . .}ord = {ba1, ba2, ba3, . . .}ord.

Let ∅ be the empty set. For an ordered set S, let SR be S in reverse order.

We will use θ(S) to represent the “truth function”; θ(S) equals 1 if statement

S is true and 0 if S is false. For example, the Kronecker delta function is defined by

δy
x = δ(x, y) = θ(x = y).

For any positive integer N , we will use ~ei where i = 1, 2, . . . , N to denote the

7

standard basis vectors in N dimensions; i.e., [~ei]j = δ(i, j) for i, j ∈ Z1,N .

Ir and 0r will represent the r-dimensional unit and zero matrices.

For any matrix A and positive integer r, let A⊗r denote the r-fold tensor

product of r copies of A. Likewise, let A⊕r denote the r-fold direct sum of r copies

of A.

For any matrix A ∈ Cr×s and p = 1, 2,∞, let ‖A‖p represent the p-norm of A,

and ‖A‖F its Frobenius norm. See Golub96[G.H. Golub and C.F. Van Loan, Matrix

Computations, Third Edition (John Hopkins Univ. Press, 1996)] for a discussion of

matrix norms.

Let ~x ∈ Cr×1. As is customary in the Physics literature, ‖~x‖2 will also be

denoted by |~x| and called the magnitude of ~x.

The Pauli matrices σx, σy, σz are defined by

σx =


 0 1

1 0


 , σy =


 0 −i

i 0


 , σz =


 1 0

0 −1


 . (1)

Let

~σ = (σx, σy, σz) , (2)

and

σa = ~σ · ~a , (3)

for any ~a ∈ R3.

Define

P0 =


 1 0

0 0


 , P1 =


 0 0

0 1


 . (4)

P1 is commonly called the number operator, and represented by n, whereas P0 =

1− n = n. For any b = (bNB−1, . . . , b1, b0) ∈ BoolNB , let

8

Pb = PbNB−1
⊗ . . .⊗ Pb1 ⊗ Pb0 . (5)

We will use Ω(β) where Ω is a 2-dimensional matrix such as P0, σx, n, etc.,

to represent the one-qubit operator Ω acting on qubit β. We will usually represent

general qubit labels by lower case Greek letters.

Any x ∈ R can be expressed as a doubly infinite power series in powers of

a base E ∈ Z>0: x = ±∑∞
α=−∞ xαEα. This expansion can be represented by:

±(· · · x1x0.x−1x−2 · · ·)[E, which is called the base E representation of x. The plus or

minus in these expressions is chosen to agree with the sign of x. It is customary to

omit the subscript [E when E = 10. For example, 2.25 = 2 + 1
4

= (1.01)[2

Define the action of an overline placed over an a ∈ Bool by 0 = 1 and 1 = 0.

Call this operation, bit negation. Define the action of an oplus placed between a, b ∈
Bool by a ⊕ b = θ(a 6= b). Call this operation, bit addition. One can extend the

bit negation and bit addition operations so that they can act on non-negative reals.

Suppose x = (· · · x1x0.x−1x−2 · · ·)[2, and y = (· · · y1y0.y−1y−2 · · ·)[2 are non-negative

real numbers. Then define the action of an overline over x so that it acts on each

bit individually; i.e., so that [x]α = xα. This overline operation is sometimes called

bitwise negation. Likewise, define the action of an oplus placed between x and y by

(x⊕y)α = xα⊕yα. This oplus operation is sometimes called bitwise addition (without

carry).

We will often use NB to denote a number of bits, and NS = 2NB to denote

the corresponding number of states. We will use the sets BoolNB and Z0,NS−1 inter-

changeably, since any x ∈ Z0,NS−1 can be identified with its binary representation

(xNB−1 · · · x1x0)[2 ∈ BoolNB .

For any x = (xNB−1 · · · x1x0)[2 ∈ Z0,NS−1, define xR = (x0x1 · · ·xNB−1)[2; i.e.,

xR is the result of reversing the binary representation of x.

Suppose π : Z0,NS−1 → Z0,NS−1 is a 1-1 onto map. (We use the letter π to

remind us that it is a permutation; i.e., a 1-1 onto map from a finite set onto itself).

One can define a permutation matrix A with entries given by Ayx = θ(y = π(x)) for

9

all x, y ∈ Z0,NS−1. (Recall that all permutation matrices A arise from permuting the

columns of the unit matrix, and they satisfy AT A = 1.) In this patent, we will often

represent the map π and its corresponding matrix A by the same symbol π. Whether

the function or the matrix is being alluded to will be clear from the context. For

example, suppose L is an NS dimension matrix, and π is a permutation on the set

Z0,NS−1. Then, it is easy to check that for all i, j ∈ Z0,NS−1, (πT L)ij = Lπ(i),j and

(Lπ)ij = Li,π(j).

Suppose πB : Z0,NB−1 → Z0,NB−1 is a 1-1 onto map (i.e., a bit permu-

tation). πB can be extended to a map πB : Z0,NS−1 → Z0,NS−1 as follows. If

x = (xNB−1 · · ·x1x0)[2 ∈ Z0,NS−1, then let [πB(x)]α = xπB(α) for all α ∈ Z0,NB−1.

The function πB : Z0,NS−1 → Z0,NS−1 is 1-1 onto, so it can be used to define a per-

mutation matrix of the same name. Thus, the symbol πB will be used to refer to 3

different objects: a permutation on the set Z0,NB−1, a permutation on the set Z0,NS−1,

and an NS-dimensional permutation matrix. All permutations on Z0,NB−1 generate

a permutation on Z0,NS−1, but not all permutations on Z0,NS−1 have an underlying

permutation on Z0,NB−1.

An example of a bit permutation that will arise later is πR; it maps πR(i) = iR

for all i ∈ Z0,NS−1 and πR(α) = NB − 1− α for all α ∈ Z0,NB−1.

Gray Code

Next, we will review some well known facts about Gray code.

For any positive integer NB, we define a Grayish code to be a list of the ele-

ments of BoolNB such that adjacent NB-tuples of the list differ in only one component.

In other words, a Grayish code is a 1-1 onto map πGish : Z0,NS−1 → Z0,NS−1 such that,

for all k ∈ Z0,NS−2, the binary representations of πGish(k) and πGish(k + 1) differ in

only one component. For any NB > 1, there are many functions πGish that satisfy

this definition.

One can define a particular Grayish code that we shall refer to as “the” Gray

10

code and denote by πG. The Gray code can be defined recursively as follows. Let

Γ0 = ∅. For NB > 0, let ΓNB
equal the set BoolNB ordered in the Gray code order.

In other words, ΓNB
= {πG(0), πG(1), πG(2), . . . , πG(2NB − 1)}ord. Then,

ΓNB+1 = {0ΓNB
, 1ΓR

NB
}ord (6)

for NB ∈ Z≥0. For example, the Gray code for NB = 1 is:

{0, 1}ord , (7a)

the Gray code for NB = 2 is:

{00, 01, 11, 10}ord , (7b)

the Gray code for NB = 3 is:

{000, 001, 011, 010,

110, 111, 101, 100}ord

. (7c)

Suppose πB represents a permutation on Z0,NB−1 which generates a permuta-

tion on Z0,NS−1 of the same name. Clearly, πB ◦πG is a Grayish code. Indeed, πB ◦πG

is a 1-1 onto map, and permuting bits the same way for all elements of a list of Gray

code preserves the property that adjacent NB-tuples differ in only one component.

(Note, however, that it is easy to find πB’s such that πG ◦ πB is not a Grayish code.

Hence, to preserve Grayishness, one must apply the bit permutation after πG, not

before).

Hadamard and Walsh Matrices

Next, we will review some well-known facts about Hadamard and Walsh matrices.

For j ∈ Z0,NS−1, define the “reversal” function πR(NB)(j) = jR, and the “nega-

tion” function πN(NB)(j) = j. The function πG(NB) for NB-bit Gray code has been

defined previously. The functions πR(NB), πN(NB) and πG(NB) are 1-1 onto so they can

11

be used to define permutation matrices of the same name. We will often write πR,

πN and πG instead of πR(NB), πN(NB) and πG(NB) in contexts where this does not lead

to confusion. Note that πR and πN are symmetric matrices but πG isn’t.

For any positive integer NB, we define the NB-bit Hadamard matrix by

H1 =
1√
2


 1 1

1 −1


 , HNB

= H⊗NB
1 , (8)

and the NB-bit Walsh matrix by

WNB
= HNB

πRπG . (9)

Eq.(9) implies that the NB-bit Hadamard and Walsh matrices have the same columns,

except in different orders. We will often omit the subscript NB from HNB
and WNB

in contexts where doing this does not lead to confusion. Note that H and W are real

symmetric matrices and the square of each of them is one.

The columns of H and W can be conveniently classified according to their

constancy (See Tuc04Dec).

Definition of U(2)-Multiplexors

Next, we will define U(2)-multiplexors.

We define a U(2)-subset to be an ordered set {Ub : ∀b} of 2-dimensional unitary

matrices. Let the index b take values in a set S. In this patent, we are mostly

concerned with the case that S = BoolNB−1.

Consider a qubit array with NB qubits labelled 0, 1, . . . , NB − 1. Suppose

we choose one of these qubits to be the target, and all other qubits to be controls.

Let ~κ = (κ1, κ2, . . . , κNB−1) denote the controls and τ the target. Thus, if τ and

~κ are considered as sets, they are disjoint and their union is {0, 1, 2, . . . , NB − 1}.
Let

{
Ub : ∀b ∈ BoolNB−1

}
be a U(2)-subset. We will refer to any operator M of the

following form as a U(2)-multiplexor:

12

M =
∑

b∈BoolNB−1

Pb(~κ)Ub(τ) , (10)

where Pb(~κ) acts on the Hilbert space of bits ~κ and Ub(τ) acts on that of bit τ .

Note that M is a function of: the labels ~κ of the controls, the label τ of the target,

and a U(2)-subset
{
Ub : ∀b ∈ BoolNB−1

}
. FIG.3 shows two possible diagrammatic

representations of a U(2)-multiplexor. The less explicit representation uses nodes

such as 31 that we will call “half moon” nodes.

An example of a U(2)-multiplexor is the direct sum

M =
∑

b∈BoolηB

Pb ⊗ Ub (11a)

= UηS−1 ⊕ . . .⊕ U2 ⊕ U1 ⊕ U0 , (11b)

where ηB = NB − 1, ηS = 2ηB , and the Ub are 2-dimensional unitary matrices. In

fact, if we label our qubits so that qubit 0 is the target and 1, 2, 3, . . . NB − 1 are the

controls, then any U(2)-multiplexor takes the form given by Eq.(11b).

An Ry(2)-multiplexor is a U(2)-multiplexor whose U(2)-subset consists solely

of one-qubit rotations about the Y axis (i.e., Ub = eiθbσy for all b).

Decomposition of Ry(2)-Multiplexors

Tuc99 and QbtrPat give a method for expressing exactly (“decomposing”) any

Ry(2)-multiplexor as a SEO consisting of CNOTs and one-qubit rotations. Next, we

will present a brief pictorial summary of this decomposition method.

FIGS. 4, 5, 6, and 7 each shows a quantum circuit. Besides the standard

circuit symbol for a CNOT, these figures use the following notation. A square gate

(such as 41 in FIG.4) with an angle θ below the square represents exp(iθσy) applied

at that “wire”. FIGS. 4 and 5 each portrays a SEO consisting of alternating one-

qubit rotations and CNOTs, with a one-qubit rotation at one end and a CNOT at

the other. The angle for the one-qubit rotation that either begins or ends the SEO

13

is denoted by θ00...0. Given two adjacent angles θb and θb′ in the SEO, (b)[2 and (b′)[2

differ only in one component, component α, where α is the position of the control bit

of the CNOT that lies between the θb and θb′ gates.

FIG.4 shows two possible ways of decomposing an Ry(2)-multiplexor with one

control. The decomposition (a) in FIG.4 is equivalent to:

exp

(
i

∑

b∈Bool

φbσy ⊗ Pb

)
= eiθ0σy(1)σx(1)n(0)eiθ1σy(1)σx(1)n(0) , (12)

where


 θ0

θ1


 =

1

2


 1 1

1 −1





 φ0

φ1


 . (13)

FIG.5 shows four possible ways of decomposing an Ry(2)-multiplexor with two

controls. FIG.5 was obtained by applying the results of FIG. 4. The decompositions

exhibited in FIG.5 can also be expressed algebraically.

FIG. 6 (respectively, 7) shows one of several possible decompositions of an

Ry(2)-multiplexor with 3 (respectively, 4) controls. In general, decompositions for

multiplexors with NK controls can be obtained starting from decompositions for mul-

tiplexors with NK − 1 controls.

Approximation of U(2)-Multiplexors

Next we will discuss one possible method for approximating U(2)-multiplexors.

For simplicity, we will first consider how to approximate Ry(2)-multiplexors.

Later on, we will discuss how to approximate general U(2)-multiplexors.

So far we have used NB to denote a number of bits, and NS = 2NB to denote

the corresponding number of states. Below, we will use two other numbers of bits, ηB

and ηB
′, where ηB = NB − 1 and ηB

′ ≤ ηB. Their corresponding numbers of states

will be denoted by ηS = 2ηB and ηS
′ = 2ηB

′
.

14

Define an ηS-dimensional matrix V by

V = HπBπG , (14)

where πB is an arbitrary bit permutation on ηB bits. Eq.(14) defines a new matrix V

by permuting the columns of the Hadamard matrix H. Eq.(14) is a generalization of

Eq.(9). In fact, V becomes W if we specialize the bit permutation πB to πR. If we

denote the columns of V by ~vj for j ∈ Z0,ηS−1, then

~vj = ~hπB◦πG(j) . (15)

In Tuc99, the decomposition of an Ry(2) multiplexor starts by taking the

following Hadamard transform:

~θ =
1√
ηS

HηB
~φ , (16)

where ηB = NB − 1 and ηS = 2ηB . The vectors {~vi : ∀i} constitute an orthonormal

basis for the space RηS in which ~φ lives, so ~φ can always be expanded in terms of

them:

~φ =

ηS−1∑
i=0

~vi(~v
†
i
~φ) . (17)

Now suppose that we truncate this expansion, keeping only the first ηS
′ terms, where

ηS
′ = 2ηB

′
and ηB

′ ∈ Z0,NB−1. Let us call ~φ′ the resulting approximation to ~φ:

~φ′ =
ηS
′−1∑

i=0

~vi(~v
†
i
~φ) . (18)

Define ~θ′, an approximation to ~θ, as follows:

~θ′ =
1√
ηS

HηB
~φ′ . (19)

If we let {~ei : ∀i} denote the standard basis vectors, then

15

HηB
~vi =




~h†0
~h†1
...




~hπB◦πG(i) = ~eπB◦πG(i) . (20)

Therefore,

~θ′ =
1√
ηS

ηS
′−1∑

i=0

~eπB◦πG(i)(~v
†
i
~φ) . (21)

By virtue of Eq.(21), if we list the components {θ′b : ∀b} of ~θ′ in the Grayish

code order specified by the map πB ◦ πG, then the items in the list at positions

from ηS
′ to the end of the list are zero. Consider, for example, FIG.5, which gives

the exact decompositions for a multiplexor with 2 controls. Suppose that in one of

those decompositions, the angles θb’s in the second half (i.e., the half that does not

contain θ00) of the decomposition are all zero. Then the one-qubit rotations in the

second half of the decomposition become the identity. Then the three CNOTs in the

second half of the decomposition cancel each other in pairs except for one CNOT that

survives. The net effect is that the decomposition for a multiplexor with 2 controls

degenerates into a decomposition for a multiplexor with only 1 control. The number

of control bits is reduced by one in this example. In general, we can approximate any

Ry(2)-multiplexor by another Ry(2)-multiplexor (the “approximant”) that has fewer

controls, and, therefore, is expressible with fewer CNOTs. We will call the reduction

in the number of control bits the bit deficit δB. Hence, δB = ηB − ηB
′.

The bit permutation πB on which this approximation of a multiplexor de-

pends can be chosen according to various criteria. If we choose πB = πR, then our

approximation will keep only the higher constancy components of ~φ. Such a smooth-

ing, high constancies approximation might be useful for some tasks. Similarly, if we

choose πB = 1, then our approximation will keep only the lower constancy compo-

nents of ~φ, giving a low constancies approximation. Alternatively, we could use for

πB a bit permutation, out of all possible bit permutations on ηB bits, that minimizes

the distance between the original multiplexor and its approximant. Such a dominant

16

constancies approximation is useful if our goal is to minimize the error incurred by

the approximation.

The error incurred by approximating a multiplexor can be bounded above as

follows. Let
{
eiφbσy : ∀b ∈ BoolηB

}
denote the Ry(2)-subset of an Ry(2)-multiplexor

My and
{
eiφ′bσy : ∀b ∈ BoolηB

}
that of its approximant M′

y. We will refer to ‖M′
y −

My‖2 as the error of approximating My by M′
y. Tuc04Dec shows that

‖M′
y −My‖2 ≤ max

b
|φ′b − φb| = ‖~φ′ − ~φ‖∞ . (22)

We will refer to ‖~φ′ − ~φ‖∞ as the linearized error, to distinguish it from the error

‖M′
y −My‖2.

A simple picture emerges from all this. The number ν of CNOTs (ν could also

be taken to be the number of some other type of elementary operation, or else, the

number of control bits) that are required to express the multiplexor, and the error

ε, are two costs that we would like to minimize. These two costs are fungible to a

certain extent. Given a multiplexor M, and an upper bound ε0 on ε, we can find

the approximant M′ with the smallest ν. Similarly, given a multiplexor M, and an

upper bound ν0 on ν, we can find the approximant M′ with the smallest ε.

So far, we have given a method whereby one can approximate any Ry(2)-

multiplexor My by another Ry(2)-multiplexor M′
y so that M′

y is expressible with

fewer CNOTs than My. One can extend this approximation method so that is can

be used to approximate general U(2)-multiplexors. Here is how. Suppose a general

U(2)-multiplexor M can be expressed in the form

M = ULMyUR , (23)

where UL and UR are unitary matrices and My is an Ry(2)-multiplexor. Then one

can approximate M by another U(2)-multiplexor M′ given by

M′ = ULM′
yUR , (24)

17

where M′
y is an Ry(2)-multiplexor that approximates My. M′

y can be obtained from

My using the previously described approximation method for Ry(2)-multiplexors.

It is always possible to expand a general U(2)-multiplexor M in the form

of Eq.(23). Indeed, here are two examples. First example: If we apply the CS

decomposition (Golub96) to a general U(2)-multiplexor M, then we get Eq.(23)

with

UL = UL1 ⊕ UL0 , (25)

UR = UR1 ⊕ UR0 , (26)

and

My =
∑

b∈BoolNB−1

eiφbσy ⊗ Pb , (27)

where UL1, UL0, UR1, and UR0 are unitary matrices. Second Example: In Tuc04Nov,

we prove that if a general U(2)-multiplexorM has a U(2)-subset
{
Ub : ∀b ∈ BoolNB−1

}
,

then each Ub can be expressed as

Ub = eiηbeiγbσzei(αbσs1+βbσs2)σf(b)
w , (28)

where ηb, γb, αb, βb are real numbers, where (s1, s2, w) constitute an orthonormal basis

for R3, and where f(b) ∈ Bool (more precisely, f(b) = θ(bµ = 1), where µ is a

bit position). For each b, one can always find a 2-dimensional unitary matrix Vb, a

one-qubit rotation about the w axis, such that

V †
b ei(αbσs1+βbσs2)Vb = eiφbσy . (29)

Thus, M can be expressed in the form of Eq.(23), with

UL = πT DV † , (30)

18

UR = V Cπ , (31)

and

My =
∑

b∈BoolNB−1

Pb ⊗ eiφbσy , (32)

where π is a permutation matrix that relabels the qubits so that M becomes a direct

sum of 2-dimensional unitary matrices, where D is a diagonal unitary matrix derived

from the factors eiηbeiγbσz , where C represents a single CNOT, and where V is a direct

sum of the Vb matrices. In general, there are many ways of expanding a general U(2)-

multiplexor M in the form given by Eq.(23), and we do not mean to restrict our

method to any particular one.

Note that to calculate the approximant multiplexor M′ defined by Eq.(24), it

might not be necessary or advantageous to calculate all the intermediate quantities

that we have introduced. Here is an example. To approximate a multiplexor whose

U(2)-subset is given by Eq.(28), it is not necessary to calculate the rotations Vb

explicitly. Instead, one can approximate the parameters αb and βb. Define vectors

~α and ~β from the ordered sets {αb : ∀b} and {βb : ∀b}, respectively. Calculate an

approximation ~α′ of ~α using Eq.(18) with φ replaced by α. Likewise, calculate an

approximation ~β′ of ~β. The two expansions of ~α′ and ~β′ in the ~vi basis can be

truncated at the same η′S. Now Ub can be approximated by replacing αb and βb by α′b

and β′b. This procedure avoids calculating the Vb but is equivalent to approximating

the φb defined by Eq.(29) by the φ′b defined by Eq.(18).

(B)Computer Implementation of Theory

Next, we will discuss a simple computer program called “my moo” that verifies and

illustrates many of the results of this patent. “my moo” is written in the Octave

language. Octave is an interactive language and environment. Full source code of

“my moo” is given in as an Appendix to this document.

19

When you run “my moo”, Octave produces two output files called “out phis.txt”

and “out error.txt”.

A typical “out phis.txt” file is shown in FIGS.8 and 9; it starts with box 81

and ends with box 91. The corresponding “out error.txt” file is shown in FIG.9, box

92.

In this example, NB = 4 so ηB = 3 and ηS = 8. The first 8 lines of

“out phis.txt” give the components of ~φ. In this case, the computer picked 8 in-

dependent random numbers from the unit interval, and then it sorted them in non-

decreasing order. “my moo” can be easily modified so as to allow the user himself to

supply the components of ~φ.

After listing ~φ, “out phis.txt” lists the ηB! permutations πB of ηB bits. For

each πB, it prints the components of ~φ′, listed as a row, for each value of δB(=row

label). Note that for δB = 0, ~φ′ = ~φ, and for δB = ηB, all φ′j are equal to the

average of all the components of ~φ. Note also that for all values of δB and j, one has

φ′j ∈ [mink(φk), maxk(φk)].

The second output file, “out error.txt”, gives a table of the linearized error

‖~φ′− ~φ‖∞ as a function of permutation number(=row label) and δB(=column label).

As expected, the error is zero when δB is zero, and it is independent of the permutation

πB when δB is maximum (When the bit deficit δB is maximum, the approximant has

no control bits, so permuting bits at positions Z0,ηB−1 does not affect the error.)

Note that in the above example, the last permutation minimizes the error for

all δB. This last permutation is πB = πR = (bit-reversal), and it gives a high constan-

cies expansion. Recall that for this example, “my moo” generated iid (independent,

identically distributed) numbers for the components of ~φ, and then it rearranged them

in monotonic order. Empirically, one finds that almost every time that “my moo” is

operated in the mode which generates iid numbers for the components of ~φ, the high

constancies expansion minimizes the error for all δB. However, this need not always

occur, as the following counterexample shows. Try running “my moo” for NB = 5,

20

and for ~φ with its first 7 components equal to 0 and its 9 subsequent components

equal to 1. For this ~φ, and for δB = 3, the high constancies expansion yields an error

of 7/8 while some of the other expansions yield errors as low as 5/8.

Note that although “my moo” visits all ηB! permutations of the control bits,

visiting all permutations is a very inefficient way of finding the minimum error. In

fact, the ηB! control bit permutations can be grouped into equivalence classes, such

that all permutations in a class give the same error. It’s clear from FIG.2 that we only

have to visit
(

ηB

δB

)
= ηB !

δB !ηB
′! (where ηB

′ = ηB−δB) equivalence classes of permutations.

Whereas ηB! ≈ ηB
ηB = eηB ln ηB is exponential in ηB,

(
ηB

δB

)
is polynomial in ηB for two

very important extremes. Namely, when δB or ηB
′ is of order one whereas ηB is very

large. Indeed, if δB = 1 or ηB
′ = 1, then

(
ηB

δB

)
= ηB; if δB = 2 or ηB

′ = 2, then
(

ηB

δB

)
= ηB(ηB−1)

1·2 , etc.

Those well versed in the art will have no difficulty in writing simple variants

of “my moo”.

Some “my moo” variants can be written which differ from “my moo” in how

the permutation πB in Eq.(21) is chosen.

In Eq.(21), we sum over all i ∈ S where S = Z0,ηS
′−1 ⊂ Z0,ηS−1. Other

“my moo” variants could be written if we modify Eq.(21) by changing S to some

other subset of Z0,ηS−1.

Still other “my moo” variants could approximate a general U(2)-multiplexor

M using the method discussed earlier, when we discussed Eqs.(23) and (24).

FIG.10 is a block diagram of a classical computer feeding data to a quantum

computer. Box 100 represents a classical computer. It comprises sub-boxes 101, 102,

103. Box 101 represents input devices, such as a mouse or a keyboard. Box 102

represents the CPU, internal and external memory units. Box 102 does calculations

and stores information. Box 103 represents output devices, such as a printer or

a display screen. Box 105 represents a quantum computer, comprising an array of

quantum bits and some hardware for manipulating the state of those qubits. For more

21

information about the organization of a present day classical computer, see CPP [J.

Adams, S. Leestma, L. Nyhoff, “C++, an Introduction to Computing”,(Prentice Hall,

1995) pages 19-20.]. A quantum compiler is a software program meant to run inside

the classical computer symbolized by box 100.

A “no-frills” preferred embodiment of this invention would be a quantum com-

piler that would express an input unitary matrix Uin as a product of unitary matrices,

one of which was an Ry(2)-multiplexor My. The quantum compiler would comprise

the approximation subroutine “my moo”. “my moo” would be invoked to approxi-

mate My by another Ry(2)-multiplexor M′
y such that M′

y is expressible with fewer

CNOTs (or some other type of multi-qubit gate) than My. There are many vari-

ants of this no-frills embodiment which those well versed in the art will be able to

derive easily. The no-frills embodiment could be enhanced by using as approxima-

tion subroutine (i.e., multiplexor approximator) one of the variants of “my moo”

discussed earlier. Some of these variants of “my moo” can approximate general U(2)-

multiplexors instead of merely Ry(2)-multiplexors.

So far, we have described some exemplary preferred embodiments of this in-

vention. Those skilled in the art will be able to come up with many modifications to

the given embodiments without departing from the present invention. Thus, the in-

ventor wishes that the scope of this invention be determined by the appended claims

and their legal equivalents, rather than by the given embodiments.

22

APPENDIX: COMPUTER LISTING

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function my_moo
NB=4; %NB=positive integer, number of bits
example =1;

5 if (NB<1)
error("NB is less than 1");

end
len_phi = 2^(NB-1);
phi=zeros(len_phi, 1);

10 switch example
case (1) %phi in increasing order

%rand("seed", 1.27);
phi = sort(rand(len_phi,1));

case (2) %phi in decreasing order
15 %rand("seed", 1.27);

phi = flipud(sort(rand(len_phi,1)));
case (3)

if(len_phi!=8)
error("this example requires NB=4");

20 end
phi=[.31; .31;.3100001; .31005; .5;.5;.5; .5];

case (4)
if(len_phi!=16)

error("this example requires NB=5");
25 end

phi=[0;0;0;0;0;0;0;1;1;1;1;1;1;1;1;1];
otherwise

error("example number is out of range");
end

30 max_phi =norm(phi, Inf); % all phi components are non-negative
err_file = fopen ("out_error.txt", "w", "native");
phi_file = fopen ("out_phis.txt", "w", "native");
for i=1:len_phi

fprintf(phi_file, "phi(%d)=\t%11.9f\n",i, phi(i));
35 end

fprintf(err_file, "error as function of (permutation\\delta_B)\n");
for del_B=0:(NB-1)

fprintf(err_file, "\t%9d", del_B);
end

40 fprintf(err_file, "\n");
more = false;
pi_B = (1: NB-1);
perm_num=0;

23

while (1)
45 [pi_B_new, more_new] = perm_lex_next (NB-1, pi_B, more);

if (more_new)
pi_B = pi_B_new;
more = true;
perm_num++;

50 fprintf(phi_file, "-----------------------\n");
fprintf(phi_file, "permutation %d = (", perm_num);
for i = 1 : NB-2

fprintf (phi_file, "%d,", pi_B(i));
end

55 fprintf (phi_file, "%d)\n", pi_B(NB-1));
fprintf(phi_file, "delta_B, phi_prime=\n");
fprintf(err_file, "%4d", perm_num);
for del_B=0:(NB-1)

phi_pr = approx_phi(phi, pi_B, del_B, NB);
60 fprintf(phi_file, "%d", del_B);

for i=1:len_phi
comp= phi_pr(i);
fprintf(phi_file,"\t%5.3f", comp);

end
65 fprintf(phi_file, "\n");

err= norm(phi - phi_pr, Inf);
fprintf(err_file, "\t%.3e", err);

end
fprintf(err_file, "\n");

70 else
break;

end
end
fclose(err_file);

75 fclose(phi_file);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function phi_pr = approx_phi(phi, pi_B, del_B, NB)
if (NB<1)

error("NB is less than 1");
80 end

len_phi = 2^(NB-1);
if (length(phi)!=len_phi)

error("phi has wrong length");
end

85 if (length(pi_B)!=NB-1)
error("pi_B has wrong length");

end
if (del_B>NB-1| del_B<0)

24

error("del_B is out of range");
90 end

NS_pr=2^(NB-1-del_B);
h = zeros(len_phi, 1);
h_norma = sqrt(len_phi);
phi_pr=zeros(len_phi, 1);

95 for j=0:(NS_pr-1)
j1 = grayish_code(j, pi_B, NB-1);
for i=0:(len_phi-1)

h(i+1) = (-1)^(dec_to_bin(j1, NB-1)*
dec_to_bin(i, NB-1)’)./h_norma;

100 end
phi_pr = phi_pr + h *(h’*phi);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function gish = grayish_code(i, pi_B, NB)

105 if (NB<1)
error("NB is less than 1");

end
if (i>=2^NB| i<0)

error("i is out of range");
110 end

if (length(pi_B)!=NB)
error("pi_B has wrong length");

end
x=dec_to_bin(i, NB);

115 y=zeros(1, NB);
for alp=0:(NB-2)

index = NB - alp;
if (x(index-1)==1)

y(index)=1-x(index);
120 else

y(index)=x(index);
end

end
y(1)=x(1);

125 z=zeros(1, NB);
for index=1:NB

z(index) = y(pi_B(index));
end
gish = bin_to_dec(z);

130 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function i = bin_to_dec(x)
NB=length(x);
if (NB<1)

25

error("NB is less than 1");
135 end

i=0;
for alp=0:(NB-1)

i = i + 2^alp*x(NB - alp);
end

140 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function x = dec_to_bin(i, NB)
if (NB<1)

error("NB is less than 1");
end

145 if (i>=2^NB | i<0)
error("i is out of range");

end
x=zeros(1, NB);
q=i;

150 for alp=0:(NB-1)
index = NB-alp;
rem=q-2*floor(q/2); %rem=remainder
q=floor(q/2);
x(index)=rem;

155 end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x_new, y_new] = i_swap (x, y)
x_new = y;
y_new = x;

160 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [p_new, more_new] = perm_lex_next (n, p, more)
%I got this code from the Internet. Bob Tucci
%Reference: Mok-Kong Shen,
%Com. of the ACM, Vol. 6, Sept. 1963, page 517.

165 more_new = more;
if (!more_new)

%p_new = (1:n);
p_new = linspace(1,n,n);
more_new = 1;

170 else
p_new(1:n) = p(1:n);
if (n <= 1)

p_new = [];
more_new = 0;

175 return;
end
w = n;
while (p_new(w) < p_new(w-1))

26

if (w == 2)
180 more_new = 0;

return;
end
w = w - 1;

end
185 u = p_new(w-1);

for j=n:-1:w
if (u < p_new(j))

p_new(w-1) = p_new(j);
p_new(j) = u;

190 ff=floor ((n - w - 1) / 2);
for k= 0 : ff

[p_new(n-k), p_new(w+k)]=i_swap(
p_new(n-k), p_new(w+k));

end
195 return;

end
end

end

27

I claim:

1. A method of operating a classical computer, wherein said method must be stored

in the external or internal memory units of said classical computer, to calculate

a sequence of operations on qubits with the purpose of applying said sequence of

operations to a quantum computer to induce said quantum computer to execute

a desired calculation, wherein said classical computer comprises a multiplexor

approximator, wherein if said multiplexor approximator is given a prior data-set

that fairly directly specifies a prior U(2)-multiplexor M, then the approximator

will calculate a posterior data-set that fairly directly specifies a posterior U(2)-

multiplexor M′, wherein M′ approximates M, wherein M′ can be expressed

with fewer elementary operations of a particular type than M, said method

comprising the steps of:

storing in said classical computer an initial data-set that fairly directly specifies

an U(2)-multiplexor M1, wherein M1 is an instance of said M,

applying said multiplexor approximator using as said prior U(2)-multiplexor

the multiplexor M1.

2. The method of claim 1, also utilizing a quantum computer, comprising the

additional step of:

manipulating said quantum computer according to said M′ obtained as the

output of an application of said multiplexor approximator.

3. The method of claim 1, wherein said elementary operations of a particular type

are CNOTs.

4. The method of claim 1, wherein said M′ is chosen by minimization of a mea-

sure of the error incurred by approximating said M by said M′, wherein said

minimization is subject to a constraint which generally rules out approximating

said M by itself.

28

5. The method of claim 4, wherein said error is defined in terms of ‖M −M′‖,
for said M, said M′, and a matrix norm ‖ · ‖.

6. The method of claim 4, wherein said constraint is an upper bound on the

number, used to express said M′, of elementary operations of a particular type.

7. The method of claim 4, wherein said constraint is an upper bound on the

number, used to express said M′, of CNOTs.

8. The method of claim 4, wherein said constraint is an upper bound on the number

of bits upon which said M′ depends.

9. The method of claim 1, wherein said M′ is chosen by minimization of the

number ν of elementary operations of a particular type which are required

to express M′, wherein said minimization is subject to an upper bound on a

measure of the error incurred by approximating said M by said M′.

10. The method of claim 9, wherein said ν is the number of CNOTs required to

express M′.

11. A method of operating a classical computer, wherein said method must be stored

in the external or internal memory units of said classical computer, to calculate

a sequence of operations on qubits with the purpose of applying said sequence of

operations to a quantum computer to induce said quantum computer to execute

a desired calculation, wherein said classical computer comprises a multiplexor

approximator, wherein if said multiplexor approximator is given a prior data-

set that fairly directly specifies a prior U(2)-multiplexor M that is expressible

as M = ULMyUR, wherein UL and UR are matrices, wherein My is an Ry(2)-

multiplexor, then the approximator will calculate a posterior data-set that fairly

directly specifies a posterior U(2)-multiplexor M′ that is expressible as M′ =

ULM′
yUR, whereinM′

y is an Ry(2)-multiplexor, whereinM′
y approximatesMy,

29

wherein M′
y can be expressed with fewer elementary operations of a particular

type than My, said method comprising the steps of:

storing in said classical computer an initial data-set that fairly directly specifies

a U(2)-multiplexor M1, wherein M1 is an instance of said M,

applying said multiplexor approximator using as said prior U(2)-multiplexor

the multiplexor M1.

12. The method of claim 11, also utilizing a quantum computer, comprising the

additional step of:

manipulating said quantum computer according to said M′ obtained as the

output of an application of said multiplexor approximator.

13. The method of claim 11, wherein said elementary operations of a particular

type are CNOTs.

14. The method of claim 11, wherein said M′
y is chosen by minimization of a mea-

sure of the error incurred by approximating said M by said M′, wherein said

minimization is subject to a constraint which generally rules out approximating

said M by itself.

15. The method of claim 14, wherein said error is defined in terms of ‖M−M′‖,
for said M, said M′, and a matrix norm ‖ · ‖.

16. The method of claim 14, wherein said constraint is an upper bound on the

number, used to express said M′
y, of elementary operations of a particular

type.

17. The method of claim 14, wherein said constraint is an upper bound on the

number, used to express said M′
y, of CNOTs.

18. The method of claim 14, wherein said constraint is an upper bound on the

number of bits upon which said M′
y depends.

30

19. The method of claim 11, wherein said M′
y is chosen by minimization of the

number ν of elementary operations of a particular type which are required to

express M′
y, wherein said minimization is subject to an upper bound on a

measure of the error incurred by approximating said M by said M′.

20. The method of claim 19, wherein said ν is the number of CNOTs required to

express M′
y.

31

ABSTRACT

A quantum compiler is a software program that runs on a classical computer. It can

decompose (“compile”) an arbitrary unitary matrix into a sequence of elementary

operations (SEO) that a quantum computer can follow. A quantum compiler previ-

ously invented by Tucci decomposes an arbitrary unitary matrix Uin into a sequence

of U(2)-multiplexors, each of which is then decomposed into a SEO. A preferred em-

bodiment of this invention is a subroutine within a quantum compiler program. The

subroutine approximates some or all of the intermediate U(2)-multiplexors whose

product equals Uin.

32

