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C. PROJECT ABSTRACT 

(Proposal Type: Quantum Algorithm) In Ref. [Tuc99], one of the investigators (Dr. Robert Tucci) has given an 

algorithm for reducing an arbitrary unitary matrix U into a sequence of elementary operations (i.e., operations that 

act on one or two qubits only, such as controlled nots and qubit rotations). The algorithm given by Tucci applies 

recursively a mathematical technique called the CS decomposition. Since 1998, Tucci has made available at his 

website the C++ code for a computer program called “Qubiter” (covered by US PATENT 6,456,994) that 

implements his algorithm.  The other investigator in the project is Prof. Steven Leon. Leon is an expert on the CS 

decomposition. His routines for computing the CS decomposition were the first to be made available in public 

software libraries (the Net-Lib library at Oakridge National Laboratory and the MATLAB User's Toolbox, The 

Mathworks).  Prof. Leon is the author of two textbooks Refs.[LeonLA6][ATLAST] on Linear Algebra. Tucci 

received his Ph.D in Theoretical Physics and Leon in Mathematics, so they bring complementary skills into this 

collaboration. Furthermore, they are both experienced and avid programmers in C++ , Matlab, etc. The goal of this 

project is to enhance the Qubiter software and the theory behind it. Quantum Computing urgently needs new 

algorithms for performing specific tasks. An enhanced Qubiter would be a general purpose tool that would greatly 

aid in the search of such algorithms. 
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D. PROJECT DESCRIPTION 

 

Introduction  

In classical digital computation, one deals with sequences of elementary operations (operations such as AND, OR 

and NOT).  These sequences are used to manipulate an array of classical bits.  The operations are elementary in the 

sense that they act on only a few bits (1 or 2) at a time. Henceforth, we will sometimes refer to sequences as 

products and to operations as operators, matrices, instructions, steps or gates.  Furthermore, we will  abbreviate the 

phrase “sequence of elementary operations” by “SEO”.  In Quantum Computation, one also deals with SEOs (with 

operations such as controlled-nots and qubit rotations), but for manipulating quantum bits (qubits) instead of 

classical bits.  Quantum SEOs are often represented graphically by qubit circuits. 

 

In Quantum Computation, one is often given a unitary operator U that describes the evolution of an array of qubits. 

One must then find a way to reduce U into a SEO. In Ref.[Tuc99], one of the investigators in this project (Tucci) 

presented a new algorithm,  based on a mathematical technique called the CS Decomposition (CSD), for 

accomplishing this task. In Ref.[Tuc99], Tucci also reported on a computer program called “Qubiter” that 

implements his algorithm.  Qubiter is covered by US PATENT 6,456,994. Its C++ source code is publicly available 

at www.ar-tiste.com/qubiter.html. We call Qubiter a “quantum compiler” because, like a  classical compiler, it 

produces a SEO for manipulating bits. 

  

Qubiter’s algorithm can be applied to any unitary operator U.  

 

It is useful to define certain unitary operators 
BNU for all { },...3,2,1∈BN , where 

BNU  is a BB NN 22 ×  matrix 

and NB is the number of bits. Some 
BNU  are known to be expressible as a SEO whose length (i.e., whose number of 

elementary quantum operations) is a power (rather than an exponential) of NB. Two examples are the NB -bit 

Hadamard Transform (HT) matrix and the NB -bit  Discrete Fourier Transform (DFT) matrix. The HT matrix is 

known to be expressible as a SEO of length Order(BN ). The DFT matrix is known to be expressible as a SEO of 

length Order(
2

BN ). Qubiter already achieves both of these SEO-length benchmarks for NB =2,3,4.  
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Although Qubiter yields short SEOs  for many unitary operators such as the HT and DFT matrices, it does not yield 

the shortest possible SEO for every unitary operator. Is it possible to enhance Qubiter so that it does? Given a 

unitary matrix U, is it possible to construct a unitary matrix Û such that: (1) Û approximates U in some sense, and 

(2) Û has a SEO that is significantly shorter than the SEO of U? These are the types of questions that this project 

will attempt to answer. 

 

CSD and Qubiter’s algorithm 

In this section, we will give a brief description of the CSD and Qubiter’s algorithm. 

 

First, let us state the CSD Theorem. The C and S stand for “cosine” and “sine”, respectively. See Ref.[Pai94] for a 

review of the history of CSD. 

 

Suppose that U  is an NN ×  unitary matrix, where N  is an even number. Then the CSD Theorem states that one 

can always express U in the form: 
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Henceforth, we will use the term D matrix to refer to any matrix that satisfies Eqs.(2) to (5). If one partitions U  into 

four blocks jiU of size 
22

NN × ,  then  

 jjiiji RDLU =  (6) 

for { }0,1, ∈ji . Thus, jiD  gives the singular values of jiU . 

 

Note that if U  were a general (not necessarily unitary) matrix, then the four blocks jiU  would be unrelated. Then 

to find the singular values of the four blocks jiU  would require eight unitary matrices (two for each block), instead 

of the four ji RL , . This double use of the ji RL ,  is a key property of the CSD. 

 

Next, we will give a bird's eye view of Qubiter’s algorithm. For more details, see Ref.[Tuc99]. 
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Figure 1. A CSD binary tree 
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Consider Fig.1. We start with an initial unitary matrix Uin   at horizontal level 0. Without loss of generality, we can 

assume that the dimension of Uin  is BN2  for some 1≥BN . (If initially Uin 's dimension is not a power of 2, we 

replace Uin  by a direct sum )1,1,1(diag �⊕inU  whose dimension is a power of two.) We apply the CSD method 

to inU . This yields for level 1 a D matrix ),0( UD , two unitary matrices ),0( UL  and ),1( UL  on the left side, 

and two unitary matrices ),0( UR  and ),1( UR  on the right side. Then we apply the CSD method to each of the 4 

matrices ),0( UL , ),1( UL , ),0( UR  and ),1( UR  that were produced in the previous step. Then we apply the 

CSD method to each of the 16 R and L matrices that were produced in the previous step. And so on. At level BN , 

the L's and R's are 11×  dimensional---i.e., just unit-modulus complex numbers.  

 

Call a central matrix either (1) a single D matrix, or (2) a direct sum rDDD ⊕⊕⊕ �21  of D matrices, or (3) a 

diagonal unitary matrix. From Fig.1 it is clear that the initial matrix Uin  can be expressed as a product of  central 

matrices, with each node of the tree providing one of the central matrices in the product. In Ref.[Tuc99], we show 

how to decompose any central matrix into a SEO. 

 

Related Work 

Qubiter’s algorithm is not the only algorithm that has been proposed for decomposing an arbitrary unitary matrix 

into a SEO. Another algorithm for doing this was first proposed by  Barenco et al  in Ref.[Bar95], and it was later 

repeated by Cybenko in Ref.[Cyb01]. Like Qubiter’s algorithm, their algorithm can be applied to any unitary 

operator U.  However, it is very unlikely  that their algorithm will be efficient at producing short SEOs unless 

further optimizations are added to it. And such optimizations, if they exist, have not been specified by anyone. 

Furthermore, as far as we know, there is no publicly available software that implements their algorithm. Qubiter’s 

algorithm is significantly different from theirs. Theirs is based on a mathematical technique described in 

Ref.[Mur58], whereas Qubiter’s algorithm is based on a mathematical technique called the CS Decomposition 

(CSD). Qubiter’s algorithm applies recursively the CSD to build a binary tree of matrices whose product, in some 

order, equals the original matrix U. Furthermore, the CSD gives two same-sized R matrices (resp. L matrices) on the 

right side (resp. left side) of a central matrix.  Because of these binary symmetries, Qubiter’s algorithm is a natural 
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tool to use for analyzing  two state systems (qubits). By contrast, the Barenco et al algorithm does not have any 

explicit binary symmetries—it seems to lack the natural symmetry of the problem. It would be very interesting to 

study how Qubiter’s algorithm is related to the one by Barenco et al, and whether they can be merged. 

 

Goals of Project 

The goal of this project is to enhance the Qubiter software and the theory behind it. This general goal comprises the 

following four sub-goals:  

GOAL 1. Find “good approximations” of a unitary matrix: Let U( NB )  be the set of BB NN 22 × unitary 

matrices. For any non-negative integer α,  let U( NB , αααα ) contain all matrices U in U( NB ) for which there 

exists a SEO whose length is less than or equal to (NB )α. For any ε > 0, and any matrix U in U( NB ), find 

the smallest α for which there exists an approximation matrix Û in  U( NB , αααα ) such that ||U – Û || < ε, for 

some metric || . ||. For any non-negative integer α, and any matrix U in U( NB ), find an approximation 

matrix Û in  U( NB , αααα ) that minimizes ||U – Û ||. Find an algorithm (based on the CSD ) for constructing 

such a  Û. Write Matlab and  C++ code that implements such an  algorithm, and incorporate the code into 

Qubiter. We believe a quantum computer can perform many useful calculations that are not too sensitive to 

the replacement of one of the steps, represented by a U in U( NB ) , by an approximation Û in U( NB , αααα ). 

The importance of  approximations of a unitary matrix in Quantum Computing is already evident in the 

case of the Quantum Discrete Fourier Transform (Ref.[Cop94]), where some gates with a very small phase 

can be omitted  with impunity.  

GOAL 2. Find ways of exploiting non-uniqueness of Qubiter algorithm to optimize SEO-length:   There are 

many situations when Qubiter’s algorithm is non-unique. For example, when the angles iθ  of the D matrix 

are not all distinct, the matrices L0 , L1 , R0 , R1 ,  given by the CSD are not unique. A second example: the 

decomposition of  the previously defined central matrices into SEO’s is highly non-unique. Qubiter has to 

resolve such non-uniqueness by making particular choices. It can make good choices that yield nearly the 

shortest possible SEO. Or, it can make bad choices, in which case it  might end up decomposing a matrix 

which belongs to U( NB , αααα ) into a SEO whose length is exponential in NB . For example, in decomposing 

the NB-bit HT and DFT matrices, Qubiter can resolve the non-uniqueness in a way that causes most of the 
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CSD tree for these matrices to degenerate into a single branch. (This is possible because when all the R 

(resp., L) matrices of a node are equal to the identity matrix, then that node will not have any child on its 

right (resp., left) side). Or, if Qubiter makes bad choices in resolving the non-uniqueness, it will end up 

with a full CSD tree and a SEO whose length is exponential in NB. 

GOAL 3. Handle Special Matrices Differently: An important way to improve Qubiter efficiency is by 

treating differently certain special types of unitary matrices. For example, to decompose a deterministic 

unitary matrix into a SEO, there might be methods from classical digital circuit theory (Karnaugh diagrams, 

etc.) that are more efficient than CSD. Another example: we might discover that for a special type of 

unitary matrix, the Barenco et al method is more efficient than CSD. Such algorithms could be incorporated 

into Qubiter.  

GOAL 4. Study and enhance stability of Qubiter code: As with any numerical Linear Algebra software, it is 

of paramount importance to study and improve the stability of the code. One wants to minimize round-off 

errors, and to minimize the impact of those errors on the final answer.  

 

Three Year Research Plan 

We consider GOAL 1 to be the most difficult one, but the one with the largest payoff if it can be achieved. We 

therefore propose to work constantly, all three years, on GOAL 1. The other 3 goals will be tackled mainly at the 

rate of one per year. Thus, we would try to follow this plan: 

Year 1: Work on GOAL 1 and GOAL 2. 

Year 2: Work on GOAL 1 and GOAL 3. 

Year 3: Work on GOAL 1 and GOAL 4. Wrap up the project. 

 

Impact of Research 

Quantum Computing urgently needs new algorithms for performing specific tasks. An enhanced Qubiter would be a 

general purpose tool that would greatly aid in the search of such algorithms.  
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Our  work would build bridges between two communities: (1) developers of Linear Algebra software (e.g., authors 

of Matlab, Lapack, etc. ) and (2) Quantum Computing researchers . Currently these two communities rarely interact. 

We believe community (1) has much to contribute to Quantum Computing. 

 

Investigators, Students 

There will be two investigators: Robert R. Tucci and Steven J. Leon, dividing the work-load about equally.  

 

Dr. Tucci has considerable experience in quantum computers and quantum information theory. He is the author of 

15 papers (all available at the arXiv eprint library) on this subject. He has also written 3 substantial computer 

programs in the field: (1) Quantum Fog (patented),  a quantum computer simulator (2) Qubiter(patented), a quantum 

compiler (3) Causa Común (described in Ref.[Tuc01]), a program for calculating entanglement of formation . 

 

Prof. Steven Leon is an expert on the CS decomposition. He was one of the first to work extensively with this 

factorization.  His subroutines for the CS decomposition and the Generalized Singular Value Decomposition were 

the first to be included in public software libraries.  (The Net-Lib library, Oakridge National Lab, and the MATLAB 

User Toolbox, The Mathworks, Natick, MA). Prof. Leon is the author of two Linear Algebra textbooks 

Refs.[LeonLA6][ATLAST] .   

 

Tucci has a PhD in Theoretical Physics and Leon in Mathematics, so they bring complementary skills into this 

collaboration. Furthermore, they are both experienced and avid programmers in C++ , Matlab, etc. 

 

Additionally there will be one graduate student assisting Professor Leon and Dr. Tucci on the project. The graduate 

student will be selected by Dr. Leon from the most qualified candidates in the Physics, Mathematics, Engineering, or 

Computer Sciences programs at UMass Dartmouth.  The project will introduce the graduate student to Quantum 

Computing, and train him on how to conduct original research and work in a research team.  It will be a valuable 

educational experience for the student, and it will recruit the student to work in a field where there is a critical need 

for trained researchers. 
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Resources-Existing & Planned 

This project will not require the use of any existing or planned laboratory equipment, other than personal computers. 

The project will, however, use certain existing resources in intellectual property. In fact, the investigators of this 

project will enjoy during this project an advantage that other investigators working on a similar topic may not enjoy, 

namely, free, and unfettered access to the following privately owned intellectual property: 

• existing Qubiter software 

• US PATENT 6,456,994 covering Qubiter and Qubiter-like software. 

 

Budget Requirements 

For each of the three years, as financial support for Dr. Leon’s research, we are asking for 20% of his salary during 

the academic year and for 2 months salary during the summer.   

 

Each year Robert Tucci will devote 75% of his work time to this project. As financial support for Dr. Tucci, we are 

requesting  75% of his yearly salary . 

 

 We are also requesting yearly support for one graduate student.  

 

Additionally we are  requesting three personal computers, software, and travel costs. 
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