
 A-1

Quantum Computer Programming

(Proposal Type: Quantum Algorithm)

A Proposal for ARO Solicitation

DAAD19-02-R-0005

PI: Steven J. Leon

Co-PI: Robert R. Tucci

 Page A-1

A. TABLE OF CONTENTS

 SECTION/PAGE
 NUMBER

Table of Contents A-1

Statement of Disclosure Preference (ARO Form 52 or 52A) B-1

Project Abstract C-1

Project Description (Technical Proposal) D-1 - D-8

Biographical Sketch E-1 – E-5

Bibliography F-1

Current and Pending Support G-1 - G-2

Facilities, Equipment, and Other Resources H-1

Proposal Budget I-1 - I-11

Contract Facilities Capital Cost of Money (DD Form 1861)(Commercial Organizations only) N/A

 C-1

C. PROJECT ABSTRACT

(Proposal Type: Quantum Algorithm) In Ref. [Tuc99], one of the investigators (Dr. Robert Tucci) has given an

algorithm for reducing an arbitrary unitary matrix U into a sequence of elementary operations (i.e., operations that

act on one or two qubits only, such as controlled nots and qubit rotations). The algorithm given by Tucci applies

recursively a mathematical technique called the CS decomposition. Since 1998, Tucci has made available at his

website the C++ code for a computer program called “Qubiter” (covered by US PATENT 6,456,994) that

implements his algorithm. The other investigator in the project is Prof. Steven Leon. Leon is an expert on the CS

decomposition. His routines for computing the CS decomposition were the first to be made available in public

software libraries (the Net-Lib library at Oakridge National Laboratory and the MATLAB User's Toolbox, The

Mathworks). Prof. Leon is the author of two textbooks Refs.[LeonLA6][ATLAST] on Linear Algebra. Tucci

received his Ph.D in Theoretical Physics and Leon in Mathematics, so they bring complementary skills into this

collaboration. Furthermore, they are both experienced and avid programmers in C++ , Matlab, etc. The goal of this

project is to enhance the Qubiter software and the theory behind it. Quantum Computing urgently needs new

algorithms for performing specific tasks. An enhanced Qubiter would be a general purpose tool that would greatly

aid in the search of such algorithms.

 D-1

D. PROJECT DESCRIPTION

Introduction

In classical digital computation, one deals with sequences of elementary operations (operations such as AND, OR

and NOT). These sequences are used to manipulate an array of classical bits. The operations are elementary in the

sense that they act on only a few bits (1 or 2) at a time. Henceforth, we will sometimes refer to sequences as

products and to operations as operators, matrices, instructions, steps or gates. Furthermore, we will abbreviate the

phrase “sequence of elementary operations” by “SEO”. In Quantum Computation, one also deals with SEOs (with

operations such as controlled-nots and qubit rotations), but for manipulating quantum bits (qubits) instead of

classical bits. Quantum SEOs are often represented graphically by qubit circuits.

In Quantum Computation, one is often given a unitary operator U that describes the evolution of an array of qubits.

One must then find a way to reduce U into a SEO. In Ref.[Tuc99], one of the investigators in this project (Tucci)

presented a new algorithm, based on a mathematical technique called the CS Decomposition (CSD), for

accomplishing this task. In Ref.[Tuc99], Tucci also reported on a computer program called “Qubiter” that

implements his algorithm. Qubiter is covered by US PATENT 6,456,994. Its C++ source code is publicly available

at www.ar-tiste.com/qubiter.html. We call Qubiter a “quantum compiler” because, like a classical compiler, it

produces a SEO for manipulating bits.

Qubiter’s algorithm can be applied to any unitary operator U.

It is useful to define certain unitary operators
BNU for all { },...3,2,1∈BN , where

BNU is a BB NN 22 × matrix

and NB is the number of bits. Some
BNU are known to be expressible as a SEO whose length (i.e., whose number of

elementary quantum operations) is a power (rather than an exponential) of NB. Two examples are the NB -bit

Hadamard Transform (HT) matrix and the NB -bit Discrete Fourier Transform (DFT) matrix. The HT matrix is

known to be expressible as a SEO of length Order(BN). The DFT matrix is known to be expressible as a SEO of

length Order(
2

BN). Qubiter already achieves both of these SEO-length benchmarks for NB =2,3,4.

 D-2

Although Qubiter yields short SEOs for many unitary operators such as the HT and DFT matrices, it does not yield

the shortest possible SEO for every unitary operator. Is it possible to enhance Qubiter so that it does? Given a

unitary matrix U, is it possible to construct a unitary matrix Û such that: (1) Û approximates U in some sense, and

(2) Û has a SEO that is significantly shorter than the SEO of U? These are the types of questions that this project

will attempt to answer.

CSD and Qubiter’s algorithm

In this section, we will give a brief description of the CSD and Qubiter’s algorithm.

First, let us state the CSD Theorem. The C and S stand for “cosine” and “sine”, respectively. See Ref.[Pai94] for a

review of the history of CSD.

Suppose that U is an NN × unitary matrix, where N is an even number. Then the CSD Theorem states that one

can always express U in the form:

 ,
0

0

0

0

1

0

1

0

=

R

R
D

L

L
U (1)

where the left and right side matrices 1010 ,,, RRLL are
22

NN × unitary matrices and

 ,
1110

0100

=

DD

DD
D (2)

 ,),,(diag
2

211100 NCCCDD �== (3)

 ,),,(diag
2

2101 NSSSD �= (4)

 .1001 DD −= (5)

For all

∈

2
,3,2,1
N

i � ,)cos(iiC θ= and)sin(iiS θ= for some angle iθ .

 D-3

Henceforth, we will use the term D matrix to refer to any matrix that satisfies Eqs.(2) to (5). If one partitions U into

four blocks jiU of size
22

NN × , then

 jjiiji RDLU = (6)

for { }0,1, ∈ji . Thus, jiD gives the singular values of jiU .

Note that if U were a general (not necessarily unitary) matrix, then the four blocks jiU would be unrelated. Then

to find the singular values of the four blocks jiU would require eight unitary matrices (two for each block), instead

of the four ji RL , . This double use of the ji RL , is a key property of the CSD.

Next, we will give a bird's eye view of Qubiter’s algorithm. For more details, see Ref.[Tuc99].

U

D(0, UL)

D(1, UL)

L(00, UL)

L(01, UL)

L(10, UL)

R(11, UL)

R(00, UL)

R(01, UL)

R(10, UL)

L(11, UL)

D(0, U)
L(0, U)

L(1, U)

R(0, U)

R(1, U)

D(0, UR)

D(1, UR)

L(00, UR)

L(01, UR)

L(10, UR)

R(11, UR)

R(00, UR)

R(01, UR)

R(10, UR)

L(11, UR)

level 0

level 1

level 2

level 3

in

Figure 1. A CSD binary tree

 D-4

Consider Fig.1. We start with an initial unitary matrix Uin at horizontal level 0. Without loss of generality, we can

assume that the dimension of Uin is BN2 for some 1≥BN . (If initially Uin 's dimension is not a power of 2, we

replace Uin by a direct sum)1,1,1(diag �⊕inU whose dimension is a power of two.) We apply the CSD method

to inU . This yields for level 1 a D matrix),0(UD , two unitary matrices),0(UL and),1(UL on the left side,

and two unitary matrices),0(UR and),1(UR on the right side. Then we apply the CSD method to each of the 4

matrices),0(UL ,),1(UL ,),0(UR and),1(UR that were produced in the previous step. Then we apply the

CSD method to each of the 16 R and L matrices that were produced in the previous step. And so on. At level BN ,

the L's and R's are 11× dimensional---i.e., just unit-modulus complex numbers.

Call a central matrix either (1) a single D matrix, or (2) a direct sum rDDD ⊕⊕⊕ �21 of D matrices, or (3) a

diagonal unitary matrix. From Fig.1 it is clear that the initial matrix Uin can be expressed as a product of central

matrices, with each node of the tree providing one of the central matrices in the product. In Ref.[Tuc99], we show

how to decompose any central matrix into a SEO.

Related Work

Qubiter’s algorithm is not the only algorithm that has been proposed for decomposing an arbitrary unitary matrix

into a SEO. Another algorithm for doing this was first proposed by Barenco et al in Ref.[Bar95], and it was later

repeated by Cybenko in Ref.[Cyb01]. Like Qubiter’s algorithm, their algorithm can be applied to any unitary

operator U. However, it is very unlikely that their algorithm will be efficient at producing short SEOs unless

further optimizations are added to it. And such optimizations, if they exist, have not been specified by anyone.

Furthermore, as far as we know, there is no publicly available software that implements their algorithm. Qubiter’s

algorithm is significantly different from theirs. Theirs is based on a mathematical technique described in

Ref.[Mur58], whereas Qubiter’s algorithm is based on a mathematical technique called the CS Decomposition

(CSD). Qubiter’s algorithm applies recursively the CSD to build a binary tree of matrices whose product, in some

order, equals the original matrix U. Furthermore, the CSD gives two same-sized R matrices (resp. L matrices) on the

right side (resp. left side) of a central matrix. Because of these binary symmetries, Qubiter’s algorithm is a natural

 D-5

tool to use for analyzing two state systems (qubits). By contrast, the Barenco et al algorithm does not have any

explicit binary symmetries—it seems to lack the natural symmetry of the problem. It would be very interesting to

study how Qubiter’s algorithm is related to the one by Barenco et al, and whether they can be merged.

Goals of Project

The goal of this project is to enhance the Qubiter software and the theory behind it. This general goal comprises the

following four sub-goals:

GOAL 1. Find “good approximations” of a unitary matrix: Let U(NB) be the set of BB NN 22 × unitary

matrices. For any non-negative integer α, let U(NB , αααα) contain all matrices U in U(NB) for which there

exists a SEO whose length is less than or equal to (NB)α. For any ε > 0, and any matrix U in U(NB), find

the smallest α for which there exists an approximation matrix Û in U(NB , αααα) such that ||U – Û || < ε, for

some metric || . ||. For any non-negative integer α, and any matrix U in U(NB), find an approximation

matrix Û in U(NB , αααα) that minimizes ||U – Û ||. Find an algorithm (based on the CSD) for constructing

such a Û. Write Matlab and C++ code that implements such an algorithm, and incorporate the code into

Qubiter. We believe a quantum computer can perform many useful calculations that are not too sensitive to

the replacement of one of the steps, represented by a U in U(NB) , by an approximation Û in U(NB , αααα).

The importance of approximations of a unitary matrix in Quantum Computing is already evident in the

case of the Quantum Discrete Fourier Transform (Ref.[Cop94]), where some gates with a very small phase

can be omitted with impunity.

GOAL 2. Find ways of exploiting non-uniqueness of Qubiter algorithm to optimize SEO-length: There are

many situations when Qubiter’s algorithm is non-unique. For example, when the angles iθ of the D matrix

are not all distinct, the matrices L0 , L1 , R0 , R1 , given by the CSD are not unique. A second example: the

decomposition of the previously defined central matrices into SEO’s is highly non-unique. Qubiter has to

resolve such non-uniqueness by making particular choices. It can make good choices that yield nearly the

shortest possible SEO. Or, it can make bad choices, in which case it might end up decomposing a matrix

which belongs to U(NB , αααα) into a SEO whose length is exponential in NB . For example, in decomposing

the NB-bit HT and DFT matrices, Qubiter can resolve the non-uniqueness in a way that causes most of the

 D-6

CSD tree for these matrices to degenerate into a single branch. (This is possible because when all the R

(resp., L) matrices of a node are equal to the identity matrix, then that node will not have any child on its

right (resp., left) side). Or, if Qubiter makes bad choices in resolving the non-uniqueness, it will end up

with a full CSD tree and a SEO whose length is exponential in NB.

GOAL 3. Handle Special Matrices Differently: An important way to improve Qubiter efficiency is by

treating differently certain special types of unitary matrices. For example, to decompose a deterministic

unitary matrix into a SEO, there might be methods from classical digital circuit theory (Karnaugh diagrams,

etc.) that are more efficient than CSD. Another example: we might discover that for a special type of

unitary matrix, the Barenco et al method is more efficient than CSD. Such algorithms could be incorporated

into Qubiter.

GOAL 4. Study and enhance stability of Qubiter code: As with any numerical Linear Algebra software, it is

of paramount importance to study and improve the stability of the code. One wants to minimize round-off

errors, and to minimize the impact of those errors on the final answer.

Three Year Research Plan

We consider GOAL 1 to be the most difficult one, but the one with the largest payoff if it can be achieved. We

therefore propose to work constantly, all three years, on GOAL 1. The other 3 goals will be tackled mainly at the

rate of one per year. Thus, we would try to follow this plan:

Year 1: Work on GOAL 1 and GOAL 2.

Year 2: Work on GOAL 1 and GOAL 3.

Year 3: Work on GOAL 1 and GOAL 4. Wrap up the project.

Impact of Research

Quantum Computing urgently needs new algorithms for performing specific tasks. An enhanced Qubiter would be a

general purpose tool that would greatly aid in the search of such algorithms.

 D-7

Our work would build bridges between two communities: (1) developers of Linear Algebra software (e.g., authors

of Matlab, Lapack, etc.) and (2) Quantum Computing researchers . Currently these two communities rarely interact.

We believe community (1) has much to contribute to Quantum Computing.

Investigators, Students

There will be two investigators: Robert R. Tucci and Steven J. Leon, dividing the work-load about equally.

Dr. Tucci has considerable experience in quantum computers and quantum information theory. He is the author of

15 papers (all available at the arXiv eprint library) on this subject. He has also written 3 substantial computer

programs in the field: (1) Quantum Fog (patented), a quantum computer simulator (2) Qubiter(patented), a quantum

compiler (3) Causa Común (described in Ref.[Tuc01]), a program for calculating entanglement of formation .

Prof. Steven Leon is an expert on the CS decomposition. He was one of the first to work extensively with this

factorization. His subroutines for the CS decomposition and the Generalized Singular Value Decomposition were

the first to be included in public software libraries. (The Net-Lib library, Oakridge National Lab, and the MATLAB

User Toolbox, The Mathworks, Natick, MA). Prof. Leon is the author of two Linear Algebra textbooks

Refs.[LeonLA6][ATLAST] .

Tucci has a PhD in Theoretical Physics and Leon in Mathematics, so they bring complementary skills into this

collaboration. Furthermore, they are both experienced and avid programmers in C++ , Matlab, etc.

Additionally there will be one graduate student assisting Professor Leon and Dr. Tucci on the project. The graduate

student will be selected by Dr. Leon from the most qualified candidates in the Physics, Mathematics, Engineering, or

Computer Sciences programs at UMass Dartmouth. The project will introduce the graduate student to Quantum

Computing, and train him on how to conduct original research and work in a research team. It will be a valuable

educational experience for the student, and it will recruit the student to work in a field where there is a critical need

for trained researchers.

 D-8

Resources-Existing & Planned

This project will not require the use of any existing or planned laboratory equipment, other than personal computers.

The project will, however, use certain existing resources in intellectual property. In fact, the investigators of this

project will enjoy during this project an advantage that other investigators working on a similar topic may not enjoy,

namely, free, and unfettered access to the following privately owned intellectual property:

• existing Qubiter software

• US PATENT 6,456,994 covering Qubiter and Qubiter-like software.

Budget Requirements

For each of the three years, as financial support for Dr. Leon’s research, we are asking for 20% of his salary during

the academic year and for 2 months salary during the summer.

Each year Robert Tucci will devote 75% of his work time to this project. As financial support for Dr. Tucci, we are

requesting 75% of his yearly salary .

 We are also requesting yearly support for one graduate student.

Additionally we are requesting three personal computers, software, and travel costs.

 F-1

F. BIBLIOGRAPHY

• [ATLAST] S. Leon, G. Herman, R. Faulkenberry, ATLAST Computer Exercises for Linear Algebra (Prentice

Hall, 1997) .

• [Bar95] A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.H. Smolin, H.

Weinfurter, Physical Review A 52 , 3457 (1995).

• [Cop94] D. Coppersmith, “An Approximate Fourier Transform Useful in Quantum Factoring”, IBM Research

Rep. No. 19642, 1994. Also available as quant-ph/0201067

• [Cyb01] G. Cybenko, “Reducing Quantum Computations to Elementary Unitary Operations''. Comput.

Sci. Eng. 3 (2): 27-32 Mar. – Apr. 2001.

• [Golub96] Gene H. Golub and Charles F. Van Loan, Matrix Computation, 3rd Edition, The Johns Hopkins

University Press (1996).

• [LeonLA6] S. Leon, Linear Algebra with Applications, 6th Edition (Prentice Hall, 2002)

• [Mur58] F. D. Murnaghan, The Orthogonal and Symplectic Groups (Institute for Advanced Studies, Dublin,

1958).

• [Pai94] C.C. Paige, M. Wei, “History and Generality of the CS Decomposition”, Linear Algebra And Its

Applications 208, 303 (1994).

• [Tuc99] R.R. Tucci, “A Rudimentary Quantum Compiler (2cnd Ed.)”, quant-ph/9902062

• [Tuc01] R.R. Tucci, “Relaxation Method For Calculating Quantum Entanglement”, quant-ph/ 0101123

• [Van85] C.F. Van Loan, “Computing the CS and Generalized Singular Value Decomposition”, Numer. Math, 46

(1985).

